首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

2.
长三角区域非道路移动机械排放清单及预测   总被引:6,自引:5,他引:1  
黄成  安静宇  鲁君 《环境科学》2018,39(9):3965-3975
基于长三角典型城市非道路移动机械实地调查成果,结合长三角各城市非道路移动机械相关指标现状及变化趋势,建立了长三角三省一市非道路移动机械大气污染源排放清单,并开展了2005~2025年区域非道路移动机械保有量、燃油消费量及污染物排放量预测.2014年长三角非道路移动机械总量约为8.23×106台,柴油消费量约9.95×106t,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别为5.5×10~3、4.9×10~5、7.6×10~5、1.1×10~5、2.9×10~4和2.7×10~4t,农用机械占长三角机械总量的93%,CO和VOCs排放贡献分别为88%和77%;建筑及市政工程机械的NO_x和PM_(2.5)排放贡献较为突出,分别占49%和35%.长三角中部和北部城市机械排放贡献相对突出.2005~2014年间,长三角地区非道路移动机械保有量、油耗及排放增幅均相对较快,预计到2020和2025年,区域非道路移动机械总量增速明显放缓,柴油消费量分别比2014年增加2%和8%.到2020年,SO_2、NO_x、CO、VOCs、PM10和PM_(2.5)排放分别比2014年下降97%、10%、3%、10%、11%和11%;到2025年分别下降97%、16%、3%、15%、21%和21%.预计未来长三角区域非道路移动机械排放将呈现逐年下降趋势,但相比机动车降幅仍相对较小,其排放贡献将日益突出,加快老旧机械淘汰并进一步提升机械排放标准对削减非道路移动机械排放总量具有十分重要的意义.  相似文献   

3.
长沙市人为源大气污染物排放清单及特征研究   总被引:5,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

4.
广西工业源大气污染物排放清单及空间分布特征研究   总被引:5,自引:0,他引:5  
大气污染物排放清单是了解区域污染物排放特征的重要资料,而工业源是大气污染的重点排放源.研究根据收集的工业企业活动水平数据,选择合理的计算方法和排放因子,建立了广西2016年工业源大气污染物排放清单.结果表明,2016年广西工业源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOCs排放总量分别为20.7×10~4、21.6×10~4、147.5×10~4、48.4×10~4、25.7×10~4、34.7×10~4 t.其中,电厂和非金属矿物制品业对SO_2、NO_x、PM_(2.5)和VOCs的贡献最高.除此之外,黑色金属冶炼是SO_2、NO_x和PM_(2.5)的主要贡献源;有色金属冶炼是PM_(2.5)的主要贡献源;农副食品加工业是VOCs的主要贡献源.根据排放源污染物排放量及地理坐标信息,建立了污染物排放量空间分布特征图.结果显示,广西工业企业SO_2和NO_x排放主要集中在百色、柳州、防城港和贵港市;颗粒物排放主要集中在贵港、柳州和百色市;VOCs排放主要集中在柳州、贵港和崇左市.研究建立的排放源清单结果具有一定的不确定性,建议进一步完善基础研究.  相似文献   

5.
天津市非道路移动源污染物排放清单开发   总被引:4,自引:8,他引:4  
张意  Andre Michel  李东  张欣  吴琳  张衍杰  马超  邹超  毛洪钧 《环境科学》2017,38(11):4447-4453
基于天津市非道路移动源污染管控需求,根据调研收集到的2015年非道路移动源活动水平数据,采用环保部《非道路移动污染源排放清单编制技术指南(试行)》推荐的核算方法,建立较为完整的天津市非道路移动源排放清单,分析污染物的时空分布.2015年,天津市非道路移动源排放CO 6.15×10~3t、HC 2.45×10~3t、NO_x2.90×10~4t、PM 1.45×10~3t、SO_21.37×10~4t.船舶污染物排放占比最高,为所有非道路移动源污染物排放总量的73.66%,主要分布于天津港区;其次是非道路移动机械,占21.66%,主要分布于市郊种植业和养殖业区县、城市建设和人群活动较为密集的城区;民航飞机和铁路机车占比较小,分别为3.55%和1.13%,主要分布于机场和铁路沿线.总体上,非道路移动源从3月开始排放量逐渐升高,而年底和年初(冬季)排放量相对较低.  相似文献   

6.
长三角地区典型城市非道路移动机械大气污染物排放清单   总被引:16,自引:8,他引:8  
本研究选取上海和杭州两市开展了非道路移动机械的实地调查,分析了各城市非道路移动机械的种类构成、使用特点、燃料类型、功率分布和排放标准等级,在此基础上建立了城市尺度非道路移动机械排放清单技术方法,编制了上海和杭州市2014年非道路移动机械大气污染物排放清单.结果表明,上海和杭州市非道路移动机械柴油消费分别为6.1×10~5t和3.2×10~5t,NO_x排放分别为3.09×10~4t和1.72×10~4t,PM_(2.5)排放分别为1.41×10~3t和8.1×10~2t,其中,挖掘机等建筑市政施工机械的排放贡献最为突出.非道路移动机械NO_x排放分别占两城市所有源的11.1%和16.1%,占流动源的18.5%和32.2%,已成为城市大气污染的重要来源之一.  相似文献   

7.
广东省非道路移动机械排放清单及不确定性研究   总被引:6,自引:0,他引:6  
随着工业源和机动车等重点污染源减排空间的下降,非道路移动机械排放已成为大气污染防治领域的研究热点之一.本研究通过资料收集与实地调研,初步构建了广东省非道路机械基于机型的活动水平数据集、综合排放因子及时空分配因子,采用自下而上的排放因子法,建立了广东省2014年非道路移动机械排放清单.并利用蒙特卡洛方法定量评估清单结果不确定性.结果表明,广东省2014年非道路移动机械的SO_2、NO_x、PM_(10)、PM_(2.5)、VOCs和CO排放总量分别为4.9、61.1、4.8、4.5、11.6 kt和45.1 kt.其中,农业机械排放以四轮农用运输车和小型拖拉机为主,贡献率分别为38.4%和18.0%,主要分布在非珠三角的农村地区;工程机械排放以建筑运输车和挖掘机为主,贡献率分别为40.1%和33.9%,主要分布在珠三角地区.此外,不确定性分析结果显示VOCs和PM_(2.5)排放结果不确定性较大,不确定性范围分别为-25.2%~41.7%和-23.4%~32.8%.NO_x不确定性较小,不确定性范围为-15.2%~17.5%.  相似文献   

8.
南昌市固定燃烧点源大气污染物排放清单及特征   总被引:2,自引:0,他引:2  
大气污染物排放清单是了解区域污染物排放特征、准确模拟空气质量的重要资料,而工业点源是大气污染的重点排放源.通过收集相关活动水平信息和合理的排放因子,采用"自下而上"的方法建立了南昌市2014年点源大气污染物排放清单.结果表明,SO_2、NO_x、CO、PM_(10)、PM_(2.5)和VOC排放总量分别为29576.2、17115.1、25946.6、4689.4、922.9和1190.4 t,其中,金属炼制行业对SO_2、CO和VOC的贡献最高,分别占37.75%、30.59%和38.45%;火电行业是NO_x的主要来源,其贡献率为47%;水泥等建材制造行业对PM_(10)和PM_(2.5)排放贡献最高,分别为26%和25%.根据排放源污染物排放量及地理坐标信息,建立了0.4 km×0.4 km的污染物排放量空间分布特征图,结果表明,南昌市大气污染物排放较为集中,青山湖区北部和新建区北部是SO_2、NO_x、CO和VOC的主要排放区,而PM_(10)和PM_(2.5)的排放量相对分散,并在安义县出现排放高值区.通过将计算结果与统计数据结果进行对比,了解所估算清单的准确程度.对SO_2和NO_x的计算值和统计值进行统计分析,结果显示,NMB(标准化平均偏差)和NME(标准化平均误差)值均小于50%,清单计算精度较高.同时,为了解清单数据质量,对清单的不确定性进行定量分析,结果显示,SO_2和VOC不确定性较低而PM_(10)和PM_(2.5)的不确定性相对较高,清单整体不确定性与其他研究结果相差不大.建议后期研究可以从提升基础数据质量和建立具有区域代表性的排放因子数据库着手,从而减小排放量的不确定性,获得精准可靠的大气污染物清单并应用于空气质量模型预报等更深入的研究.  相似文献   

9.
该文基于对金华市大气污染排放源的摸底调查,基础数据收集和分析,结合国内外的研究结果,采用"自下而上"为主的排放系数法,建立了2013年金华市人为源大气污染物排放清单。该清单涉及的污染物包括SO_2、NO_x、CO、PM_(10)、PM_(2.5)、VOC和NH_3。人为污染源种类包括电厂源、工业源、移动源、扬尘源、VOC相关源及其他污染源,农业源,居民生活源等。结果表明,金华市2013年大气污染源SO_2排放总量约为3.83万t,NO_x约为7.75万t、CO约为12.50万t、PM_(10)约为4.10万t,PM_(2.5)约为1.88万t、VOC约为7.66万t、NH_3约为2.63万t。从排放源的分担率来看,工业源是金华市大气污染物的最主要的排放源之一,对SO_2、NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了67.31%、34.42%、30.39%、53.02%和50.95%。同样,道路移动源的贡献也不容忽视,对NO_x、CO、PM_(10)和PM_(2.5)的贡献分别达到了42.84%、34.13%、3.31%、6.55%。电厂锅炉、道路扬尘、工业溶剂使用、畜禽养殖对不同污染物分别有着重要贡献。电厂锅炉对SO_2、NO_x、CO的排放量分别贡献了29.06%、17.89%、9.73%。道路扬尘对PM_(10)和PM_(2.5)的贡献分别为25.68%和18.01%。工业溶剂对于VOC的贡献为32.65%。NH_3主要来自畜禽养殖,占了66.57%。该人为源大气污染物排放清单可为当地的污染防控提供重要的基础信息。  相似文献   

10.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

11.
中等挥发性有机物(Intermediate Volatility Organic Compounds,IVOCs)是二次有机气溶胶(SOA)的重要前体物.然而,当前我国IVOCs排放清单研究相对较少,现有研究大多采用基于IVOCs/POA比值法估算,导致IVOCs排放表征存在很高的不确定性.以移动源为研究对象,在优先采用本土实测的排放因子的基础上,构建了基于实测排放因子的广东省2019年移动源IVOCs排放清单,并与基于IVOCs/POA比值法建立的排放清单进行对比评估.结果显示:2019年广东省移动源IVOCs总排放量为2.1万t,其中,道路移动源IVOCs排放量为1.5万t,占总排放量的70%,主要来自柴油重货(33%)、柴油轻货(23%)、汽油小客(14%).其中,道路移动源IVOCs汽油车主要以国四、国五标准车型为主,分别占 汽油车排放的36%和49%,而柴油车主要以国三、国四标准车型为主,分别占柴油车排放的53%和28%.相比实测因子法,比值法计算的道路移动源IVOCs排放整体偏高了100%~200%,但计算的非道路移动源IVOCs排放整体偏低了近1/3.通过不确定性量化对比也发现,实测因子法建立的IVOCs排放清单不确定性整体比比值法平均降低了60%,表明实测排放因子能够提高IVOCs表征的可靠性.此外,本土和国外实测排放因子建立的道路移动源IVOCs排放也有明显差异,采用国外实测排放因子可能会导致广东省2019年道路移动源IVOCs排放低估30%~50%.  相似文献   

12.
机动车排放污染与城市交通环境   总被引:7,自引:0,他引:7  
分析了城市机动车排放污染的状况及影响因素,特别重点讨论了机动车车型和汽车城市道路运行工况对机动车排放污染物的影响,提出了改善城市交通环境的若干措施。  相似文献   

13.
利用IVE模型和对杭州市机动车排放管理数据库大数据的分析,得到杭州市2015年各类机动车主要温室气体高分辨率排放清单,分析了排放分担情况及时间变化特征,并利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布.结果表明,杭州市道路移动源温室气体排放中CO_2、CH_4和N_2O的年排放量分别为818.11×10~4、0.85×10~4和0.07×10~4t,合计856.79×10~4t(以CO2当量计).从温室气体种类来看,CO_2占道路移动源温室气体排放总量的绝大部分,为95.5%;从机动车类型来看,小微型客车对道路移动源温室气体排放的贡献率最大,占72.8%;从道路类型的排放情况来看,杭州市市中心、城区、城郊和郊区中温室气体合计CO_2当量贡献率最高的均为主干路,分别为43.4%、61.8%、58.0%和42.4%.杭州市道路移动源温室气体排放强度均呈现由城市中心向城市边缘递减的趋势,同时温室气体排放量日变化特征明显,均出现弱双峰现象.  相似文献   

14.
天津市2017年移动源高时空分辨率排放清单   总被引:5,自引:5,他引:0  
移动源已成为城市地区大气污染的主要贡献源.已有研究多关注道路移动源(机动车)或非道路移动源(工程机械、农业机械、船舶、铁路内燃机车和民航飞机)中单一源类的排放,欠缺对移动源总体排放特征的把握.本研究提出了移动源高时空分辨率排放清单的构建方法,据此建立了天津市2017年移动源排放清单,并分析其排放构成与时空特征.结果表明,天津市移动源CO、VOCs、NOx和PM10的排放量分别为18.30、6.42、14.99和0.84万t.道路移动源是CO和VOCs的主要贡献源,占比分别为85.38%和86.60%.非道路移动源是NOx和PM10的主要贡献源,占比分别为57.32%和66.95%.从时间变化来看,移动源所有污染物排放在2月均为最低,CO和VOCs在10月排放最高,而NOx和PM10则在8月排放最高.节假日(如春节和国庆节等)对移动源排放的时间变化影响显著.从空间分布来看,CO和VOCs排放主要集中于城区和车流量大的公路(高速路和国道)上,NOx和PM10在城区与港区均具有较高排放强度.污染物的空间分布差异是由其主要贡献源的空间位置决定的.本研究可为天津市大气污染的精细化管控和空气质量模拟提供数据支撑,同时可为其他地区移动源排放清单的建立提供方法参考.  相似文献   

15.
NONROAD非道路移动源排放量计算模式研究   总被引:3,自引:0,他引:3  
研究和分析了影响非道路移动源污染物排放的各种因素,系统地剖析了美国环保署推荐的NONROAD非道路移动源污染物排放量的计算模式。给出了模式中关于排放因子的工况、使用水平、燃料中氧和硫含量以及环境温度修正的方法,并提供了非道路机械的活动因子和负载水平的调查结果,为模式及其参数的正确应用和修正提供了理论指导,探讨了中国非道路移动源排放应该考虑的主要因素。  相似文献   

16.
根据渭南市机动车保有量和抽样调查与观测数据,采用MOVES模型计算了渭南市2017—2019年道路移动源CO2、CH4、N2O和CO 4种 温室气体的排放量,分析了机动车车型、燃料和排放标准对温室气体排放量的影响.基于ArcGIS和渭南市道路网信息,建立了高分辨率(1 km× 1 km和1 h×1 h)的温室气体排放清单.结果表明,渭南市2019年道路移动源CO2、CH4、N2O和CO的排放量分别为424.322×104、0.044×104、0.007×104和2.808×104 t,以CO2当量计,机动车温室气体的总排放量为432.843×104 t. 4种道路移动源温室气体中,CO2占总温室气体排放量的98.03%.渭南市小型客车对温室气体的贡献率最大,分别排放了43.41%的CO2、74.78%的N2O和57.17%的CO.大型客车排放了34.47%的CH4, 汽油车和天然气汽车是N2O和CH4的主要排放源,分别排放了86.76%的N2O和61.87%的CH4.渭南市道路移动源温室气体排放强度24 h变化呈“双峰”分布,空间分布呈明显的“线-面”特征,这与道路分布密度高度相关,路网密集的城市中心为机动车温室气体的高排放区.  相似文献   

17.
应用MOVES-2014a模型并对其输入参数进行了本地化修正,计算了 2018年渭南市道路移动源污染物的排放因子和排放总量.基于渭南市路网分布和GIS信息及车流分布对污染物总排放量进行了空间和时间分配,建立了 1 km×1 km和l h分辨率的排放清单.结果表明,渭南市机动车排放CO、NMVOCs、NOx、NO2、NO...  相似文献   

18.
阮兆元  燕鸥  王体健  王勤耕  罗干  文金科 《环境科学》2023,44(11):5933-5945
为了解南京市溧水区大气挥发性有机物(VOCs)的组分、来源及其对臭氧的贡献,2021年对区域内VOCs开展了为期1 a的走航监测,进行数据分析.结果表明,溧水区ρ(TVOC)年均值为223.45μg·m-3,其中ρ(烷烃)为49.45μg·m-3(占比22.13%),ρ[含氧(氮)VOCs]为50.63μg·m-3(占比22.66%),ρ(卤代烃)为64.73μg·m-3(占比28.95%),ρ(芳香烃)为35.46μg·m-3(占比15.87%),ρ(烯烃)为18.26μg·m-3(占比8.19%),其他为4.9μg·m-3(占比2.2%).夏季的ρ(TVOC)平均值较高,为263.75μg·m-3,冬季较低,为187.2μg·m-3,春季为246.11μg·m-3,秋季为204.77μg·m-3.日均TVOC浓度,在09:00~10:00和14...  相似文献   

19.
机器的结构噪声源的特性   总被引:3,自引:0,他引:3  
从实验上获得结构噪声源描述符,并利用源描述符的概念对不同自由度的结构声源特性进行评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号