首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 531 毫秒
1.
依据介质阻挡放电(DBD)和溶液吸收处理气态污染物的原理,设计出一种DBD和水吸收联合降解挥发性有机化合物(VOCs)的实验装置.研究其对甲苯的降解效果.考察了放电电压、甲苯初始浓度、模拟废气流量对甲苯降解效果的影响.分析了DBD和水吸收的相互作用.结果表明.DBD和水吸收联合可以提高甲苯的降解率.在放电电压为15.9 kV时甲苯的降解率为81.5%.比单独放电时提高了13.3百分点;甲苯的降解率随着放电电压增大而升高,随着气体流量和甲苯初始浓度增大而降低.该技术可以作为放电等离子体前处理工艺,为高效处理上业废气提供参考.  相似文献   

2.
采用介质阻挡放电低温等离子体技术处理苯、乙酸乙酯和二氯甲烷,考察了反应器的结构、输出电压、初始浓度以及气速等条件对降解率和能量效率的影响。结果表明:3种VOC中,二氯甲烷最易被降解,乙酸乙酯次之,而苯的降解率最低;双介质阻挡放电反应器对VOC的处理效果优于单介质,在输出电压为15 kV的条件下,采用双介质反应器对VOC的降解率可达99%;输出电压越高,挥发性有机废气的降解率越高,在输出电压从15 kV(P=73.7 W)降低到10 kV(P=21 W),VOC的降解率从99%降低到6.6%;VOC浓度越高降解率越低,在VOC初始浓度从244 mg·m~(-3)升高到2 542 mg·m~(-3)时,降解率从96.9%降低到63.98%;气速直接关乎停留时间,停留时间延长,降解率提高,气速300 L·h~(-1)下降到100 L·h~(-1),降解率从78%提高到97%。  相似文献   

3.
介质阻挡放电处理甲苯及其放电参量的研究   总被引:1,自引:1,他引:0  
采用等离子体反应器介质阻挡放电产生低温等离子体处理甲苯,在分析负载等效电路的基础上,利用电压-电荷Lis-sajous图形法对气体放电过程中的放电参量进行测量研究,并探讨了相关工况参数对甲苯去除率的影响.研究结果表明,该反应器所得能量随着电压的增大而增大;气隙等效电容随着外加电压和气隙厚度的增大而减小;电压较低时.电介质等效电容变化不大,随着电压的增大迅速升高,当电压达到一定值后,电介质等效电容变化平缓;该反应器采用粗电极对甲苯的去除率优于细电极;甲苯的去除率随着放电功率的上升而提高,但是能量效率却呈降低的趋势.此外,研究发现甲苯的初始浓度与气体流量与甲苯的去除率呈反比,而与甲苯的绝对去除量呈正比.  相似文献   

4.
研制了一种新型线-板式介质阻挡放电反应器。通过分析V-Q Lissajous图,得出了反应器放电过程的特征,以乙烯的降解率为指标,优化了反应器的结构,并考察了工艺参数(相对湿度、乙烯初始浓度和停留时间)变化对反应器性能的影响。实验结果表明,反应器放电时,输入功率的增加不会使放电电压增大,增加的是放电电流;优化后的反应器以2.5mm厚的陶瓷板做阻挡介质,以间距为0.5 mm的钼丝做电晕极,放电间距3 mm;乙烯的降解效率受湿度的影响小于10%,随初始浓度的增加或停留时间的减小而降低;最佳的工艺参数为湿度24%(298 K)、初始浓度17 mg·m~(-3)、停留时间1 s。与传统的平行板式反应器相比,该反应器起晕电压较低、能量效率较高,适于降解低浓度的乙烯气体。  相似文献   

5.
利用自制等离子体反应器开展电晕-介质阻挡协同放电降解连续流丙酮研究,采用均匀设计法获得适宜的丙酮降解参数及其相互关联性,通过解析电晕-介质阻挡协同放电机理,结合丙酮降解热力学性能分析,获得影响丙酮降解的主要因素。结果表明:丙酮降解的适宜条件为反应器电压9.60kV、空气流量1.4L·min~(-1)、在丙酮气体流量20 mL·min~(-1)的连续流体系下,电晕-介质阻挡协同放电3 min、初始质量浓度为1.807 mg·L~(-1)的丙酮单次循环降解率可达35.01%。解析等离子体放电过程和热力学性质发现,丙酮降解受协同放电活性粒子与反应温度的双重影响。  相似文献   

6.
变频介质阻挡放电去除甲苯的实验研究   总被引:2,自引:1,他引:1  
以甲苯为目标污染物,采用变频交流电源,利用介质阻挡放电(DBD)对其进行去除。实验过程中,场强、频率、气体流速和初始浓度是影响甲苯去除效果的4个主要因素。通过多因素正交实验,分析4个因素对去除效果影响的主次关系,获得了最优方案。进行单因素趋势实验,研究各因素单独对甲苯去除效果的影响趋势,得出各因素对甲苯降解效果影响的变化曲线,并对结果作出分析。实验结果表明,当场强为9.7 kV/cm,频率为400 Hz,气体流速为2.5 cm/s,初始浓度为700 mg/m3时,甲苯去除率可达80.9%。  相似文献   

7.
介质阻挡放电联合催化臭氧化降解甲苯   总被引:4,自引:2,他引:2  
采用介质阻挡放电区后结合MnOx/Al2O3/发泡镍去除甲苯,考察甲苯进气方式、臭氧产生方法及湿度对甲苯与O3同时去除的影响。结果表明,O3是等离子体区后催化降解甲苯的主要物种,介质阻挡放电联合催化臭氧化可实现甲苯及O3的同时高效去除。输入电压为9.0 kV时,甲苯的去除效率达92.8%,在80 min内O3的去除效率维持在99%以上。水蒸气对催化剂催化分解臭氧的活性没有直接的影响,O3浓度较高时湿度对甲苯降解效率的影响很小。GC-MS分析结果表明,甲苯降解的主要气相副产物有烷烃、酸、酮和含苯环有机物,提出了甲苯的降解途径。  相似文献   

8.
为提高机动车尾气中NO_x的去除率,采用了介质阻挡放电对NO_x进行处理,研究了介质阻挡放电反应器在不同介质参数、放电参数和气体参数条件下对NO_x去除的影响,优化了双极性高压脉冲放电的反应参数。结果表明:当放电极为直径10mm的螺纹铜棒,介质管为内径16mm、介质厚度1.5mm的石英玻璃管,放电间隙为3mm,放电长度为28cm,放电频率为60Hz,O_2体积分数为6%,NO_x初始质量浓度为536mg/m~3,气体流量为1.1L/min,单向脉冲电压为12kV,C_2H_2与NOx质量浓度比为1.5时,NO转化率和NO_x去除率分别为64.56%和22.57%。  相似文献   

9.
利用自制电晕-介质阻挡协同放电低温等离子体降解大流量甲苯废气,运用均匀设计法优化获得甲苯降解的适宜条件,探究了各因素及因素间交互作用对甲苯降解的影响,并开展甲苯降解动力学分析。结果表明:降解甲苯的最佳条件为工作电压13kV、放电频率6.5kHz、废气流量为1.0L/min,甲苯初始质量浓度924mg/m~3,在此条件下甲苯气体降解率为94.93%,能量效率为0.63g/(kW·h);甲苯降解符合一级反应动力学,甲苯降解反应速率常数与输入功率具有良好线性关系。  相似文献   

10.
为解决喷漆和涂装废气中VOCs的污染,采用同轴圆管式介质阻挡反应器进行低温等离子体降解高浓度甲苯探索,研究了反应器参数(放电间距、放电长度)、操作参数(初始甲苯浓度、气体流量、输入功率)等关键参数对甲苯转化率和产物CO2选择性的影响。结果表明:放电间距过大或者过小都不利于甲苯的降解,放电长度的增加对其影响相对较小;输入功率越大,甲苯的降解效果越好,并且反应产物中臭氧的浓度越低,但气体流量及初始甲苯浓度的增加不利于甲苯的降解。最后对产物进行GC-MS检测,分析了甲苯降解机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号