首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The levels of roadside PM10in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM10 were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PM10in Beijing correlated strongly with the PM10background in the urban atmosphere. The levels of PM10in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM10was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM10in Beijing could have multiple origins and was to some extent dispersiongoverned. In Guangzhou, the roadside PM10did not closely relate to the background values. The PM10 pollution was greatly afected by local trafc conditions. The simulation of PM10 for diferent road types was completed during the study period using the Motor Vehicle Emissions Factor Model(MOBILE6.2) as an emission model and the California Line Source Dispersion Model(CALINE4) and Operational Street Pollution Model(OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufcient for the simulation of PM10in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM10 in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements.  相似文献   

2.
2006~2009年我国超大城市霾天气特征及影响因子分析   总被引:15,自引:11,他引:4  
收集了2006~2009年北京、上海、广州和成都能见度等气象因子以及SO2、NO2和PM10等环境空气质量资料,在此基础上统计分析上述4个超大城市霾天气频率季节和年际变化特征及其主要的影响因子.结果表明,北京、上海、广州和成都霾天气频率季节最高值分别为夏季、冬季、春季和秋季.北京和广州霾天气频率呈现逐渐下降趋势,而上海和成都呈现逐渐上升趋势.PM10和相对湿度是影响能见度或霾天气频率关键因子.北京能见度变化对相对湿度比较敏感,而上海和广州对PM10浓度变化比较敏感,成都对相对湿度和PM10浓度敏感程度相当.  相似文献   

3.
北京市典型道路扬尘化学组分特征及年际变化   总被引:3,自引:3,他引:0  
胡月琪  李萌  颜旭  张超 《环境科学》2019,40(4):1645-1655
选择北京市具有代表性道路,于2004年9月和2013年5月进行采样,利用再悬浮设备制备道路扬尘PM10与PM2.5样品,并进行化学组分分析,建立了2004年和2013年北京市道路扬尘PM10与PM2.5源成分谱,以分析和探讨北京市道路扬尘化学组分特征及其组分年际变化.结果表明,北京市道路扬尘PM10与PM2.5源成分谱中的化学组分特征均为Ca、Si、有机碳(organic carbon,OC)、Al、Fe、K、Mg、SO42-和元素碳(element carbon,EC),其在道路扬尘中的含量之和分别为:2004年PM10为46.7303%、PM2.5为56.9198%和2013年PM2.5为38.7478%;占全部被测组分的比例分别为95.9%、94.3%和94.7%.2004年道路扬尘中,环路Si、Al的含量显著低于其他道路类型,受到的土壤风沙尘影响最小;建筑水泥尘特征元素Ca主干道含量最高,高速五环进京口含量最低;EC在高速五环进京口的含量显著高于其他道路类型.而2013年PM2.5中被测组分总含量及Si、Al、Ca的含量次干道均显著低于其他道路类型.2013年与2004年相比,北京市道路扬尘PM2.5中除SO42-含量略上升了2.0%外,其余组分含量下降显著,Ca、Si、OC、Al、Fe、K、EC和NO3-下降幅度分别为45.1%、31.5%、17.5%、20.3%、55.6%、33.3%、30.0%和50.3%.结果表明,[NO3-]/[SO42-]比值不能准确反映固定源和移动源相对贡献大小的变化.[OC]/[EC]比值,2004年PM10为9.77±3.88,PM2.5为9.36±3.25,2013年PM2.5为14.41±10.41,北京市道路扬尘存在二次有机碳(secondary organic carbon,SOC),且SOC是道路扬尘PM10与PM2.5的重要组成部分.不同城市道路扬尘及同一城市不同粒径的道路扬尘成分谱相似度不高,应建立相应的成分谱并适时更新.  相似文献   

4.
1 IntroductionInrecentyears,moreandmorecitieshavesufferedfromairpollutioncausedbyvehicledischarge.Manyofthepollutantsfromvehic?..  相似文献   

5.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

6.
利用相对湿度、能见度和PM_(2.5)质量浓度观测数据,针对不同相对湿度下,建立了消光系数与PM_(2.5)质量浓度之间线性关系,并分析了相关关系的全国分布特征.结果表明,我国中东部大部分地区在一定相对湿度区间内均可建立线性相关关系,而且相关性较好,相对湿度40%~90%区间内的平均相关系数高于0. 75,其中北京相关系数高达0. 9.北京、长三角和四川等地的PM_(2.5)单位质量消光效率在同等相对湿度下明显大于其他地区.不同地区湿度对能见度影响程度不同,北京等地在相对湿度大于90%时相对湿度对能见度作用大于PM_(2.5),而广州在相对湿度大于80%时相对湿度的作用明显增强.利用能见度反算北京地区PM_(2.5)浓度可知,1980~1996年,PM_(2.5)浓度年际变化不大,受采暖方式影响冬季PM_(2.5)浓度显著较高; 1997~2009年呈现缓慢下降趋势; 2010~2012年呈现上升趋势. 1980年以来,全国的PM_(2.5)浓度整体呈上升的趋势,尤其是华北地区,PM_(2.5)浓度始终高于全国其他地区.  相似文献   

7.
利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.  相似文献   

8.
北京市道路空气中NO_x现状监测及控制对策   总被引:5,自引:4,他引:1  
通过对北京城市3种典型交通道路空气中NOx的时空变化监测发现,城市道路空气NOx中NO分担率主要集中在31.6%~81.1%,明显高于非交通道路中NO的分担率(3.0%~34.0%).其原因是NO主要来源于机动车尾气的排放.利用MOBILE软件计算了各类机动车排放的ρ(NOx),并相应地确定了影响交通道路中ρ(NOx)的敏感因素.据此提出了北京市交通道路空气中NOx若干控制措施,如控制车速、车型、油料等.  相似文献   

9.
2015年1月下旬北京市大气污染过程成因分析   总被引:7,自引:2,他引:5  
采用地面观测和数值模拟相结合的方式,对2015年1月下旬北京市两次PM2.5污染过程进行分析。研究表明,在第1次过程中PM2.5浓度经过3个抬升阶段达到峰值,过程前期区域传输的作用明显,随后区域传输和本地污染积累、化学反应共同加重了污染的程度;3个浓度抬升阶段中均出现过PM2.5浓度“跃升式”增长,且污染水平越重,浓度跃升的幅度越大。第2次过程是一次典型的静风、高湿度下的PM2.5持续性增长过程,主要是本地污染物积累和发生化学反应二次生成导致的。大气氧化性分析和SOR、NOR分析均验证了对两次污染过程特征和成因的推断。数值模拟结果表明,第1次污染过程中区域传输对不同站点PM2.5的贡献率在15.2%~68.7%之间;第2次过程区域传输的贡献率在12.8%~46.3%之间。  相似文献   

10.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   

11.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

12.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

13.
采用北京市环境监测中心35个站点的PM2.5监测数据及MODIS Terra的大气气溶胶光学厚度L3 C051产品数据,分季度建立北京市PM2.5历史浓度遥感估算模型.结合北京大气污染物(PM10、PM2.5、SO2、NO2)年均浓度数据,对北京市2001—2012年间用于工业废气污染治理投资累计额进行了效能分析.研究表明,北京市工业废气污染治理投资对于改善大气PM10、SO2、NO2均有显著贡献,但其对于大气PM2.5污染的治理效果并不明显.可能原因包括PM2.5排放源的复杂性、相关治理措施对PM2.5的针对性、经济增长导致的区域PM2.5源排放持续增长及区域外排放的持续影响等.因此,需要采取专门的有针对性的治理措施,建立健全大气污染治理技术和激励机制,控制工业燃煤及城市交通排放,削减本地及周边源排放,以有效改善北京地区大气PM2.5污染状况.  相似文献   

14.
APEC会议期间北京市交通扬尘控制效果研究   总被引:8,自引:3,他引:5  
为了评估APEC会议期间严格的交通扬尘控制措施的效果,选取北京地区不同类型道路,在会议之前和会议期间分别采集40个道路积尘负荷样品,并调研了道路车流量及车型比例等机动车活动水平变化.采用AP-42方法计算不同类型道路PM10排放因子和排放强度,基于Arc GIS平台应用自下而上的方法建立了排放清单,分析交通扬尘PM10排放的空间分布特征,评估APEC会议期间北京市道路交通扬尘控制效果.结果表明:APEC会议期间北京市日均车流量减少12%,快速路、主干道、次干道、支路、郊区道路的积尘负荷分别下降31%、58%、73%、54%和46%,PM10排放因子分别下降63%、67%、86%、63%和40%,排放强度分别下降73%、71%、87%、78%和49%.在空间分布上,城区道路交通扬尘PM10排放量减少77%,郊区道路减少49%.  相似文献   

15.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

16.
Particulate pollution was a critical challenge to the promise of good air quality during the 2008 Beijing Olympic Games, which took place from August 8th to 24th. To ensure good air quality for the Games, several temporary emission control measures were implemented in Beijing and surrounding areas. Ambient particulate matter concentration decreased significantly during the Olympic period; however, it is difficult to distinguish the effectiveness of those control measures since meteorology also affects ambient PM2.5 concentration. In this work, a multiple linear regression model based on continuous field monitoring at a roadside site was conducted to evaluate the effects of meteorology and emission control measures on the reduction of PM2.5 during the 2008 Olympic Games. The hourly data set was divided into two time periods, the no control period, June 22nd to July 4th, and the control period, July 28th to August 21st. The response variable was PM2.5 and the meteorology covariates used in the model were hourly temperature, dew point temperature, wind speed and precipitation. Wind direction was not a significant predictor of PM2.5 levels in either the control or the no control period. Using the meteorologically-based regression coefficients from the two time periods, meteorology was found to contribute to at least a 16% reduction in PM2.5 levels in the roadside microenvironment; while the pollution control measures contributed to at least a 43% reduction in PM2.5 levels.  相似文献   

17.
北京市典型绿化灌木阻滞吸附PM2.5能力研究   总被引:1,自引:0,他引:1  
梁丹  王彬  王云琦  张会兰  杨松楠  李昂 《环境科学》2014,35(9):3605-3611
选取北京市典型绿化灌木物种大叶黄杨、小叶黄杨、紫叶小檗、矮紫杉,结合气室模拟与实地观测的方法,综合测定不同树种对PM2.5的吸附能力.同时,收集2012年12月~2013年5月间北京市区PM2.5浓度值,分析了北京市冬春季PM2.5污染特征.结果表明,由气室实验得到的4种植物对PM2.5阻滞吸附能力排序为:紫叶小檗>小叶黄杨>矮紫衫>大叶黄杨,其原因主要为叶片特征差异所致;室外测量结果表明,4种物种吸附能力排序为:小叶黄杨>紫叶小檗>矮紫衫>大叶黄杨.气室模拟与室外实测结果均表明,小叶黄杨和紫叶小檗具有较强的阻滞吸附PM2.5的能力;气室模拟与室外观测实验中植物阻滞吸附PM2.5能力的大小略有差异,其原因应与植物结构相关.同时,通过分析北京市PM2.5浓度的季节性变化,发现北京市冬季的PM2.5浓度值尤为高,且常绿灌木植物仍能表现出较好的阻滞吸附PM2.5的能力.  相似文献   

18.
交通与气象因子对不同粒径大气颗粒物的影响机制研究   总被引:9,自引:3,他引:6  
罗娜娜  赵文吉  晏星  宫兆宁  熊秋林 《环境科学》2013,34(10):3741-3748
为了研究北京市气象因子与车流量、车速等交通因子对PM2.5、PM10浓度水平的影响,在市区三环主路及居民区选取了28个采样点,采集滞尘量,PM2.5、PM10浓度、车速、车流量、温度、湿度、风速等数据.通过3个月的滞尘质量分析,得出交通源对空气质量的影响是显著的,其中三环主道路两侧采样点和远离交通源对照点滞尘均值分别为0.284 g和0.016 g.再由道路口与居民区对比实验(局部实验)得出,居民区采样点测得的PM2.5和PM10浓度均低于道路口颗粒物浓度,差值均值分别为101 074 n·(cf)-1和15 386 n·(cf)-1,同时PM2.5白天浓度一般低于夜间.最后结合最佳子集预测模型分析得出,PM2.5和PM10受到湿度和温度的影响最大,车速、车流量、风速次之,其中车速、车流量、低风速对颗粒物PM2.5的影响比对PM10的影响更为显著.  相似文献   

19.
北京市MODIS气溶胶光学厚度与PM_(10)质量浓度的相关性分析   总被引:1,自引:1,他引:0  
谢志英  刘浩  唐新明 《环境科学学报》2015,35(10):3292-3299
利用北京地区2012年1—12月NASA MODIS气溶胶光学厚度(AOD)和通过空气污染指数(API)转换得到的PM10质量浓度进行了相关性分析.结果发现,二者的直接相关程度较低,在引入季节变化的气溶胶标高且考虑了气溶胶的垂直分布后,进行标高订正,二者的相关系数有所提高;在考虑了湿度影响因子后,进行湿度订正,二者的相关系数显著提高;引入平均风速、平均气温和平均气压等气象因素,进行多元回归分析,相关系数进一步提高.证实了卫星遥感气溶胶光学厚度在经过垂直和湿度订正并考虑气象因素的情况下,可以作为监测北京地区颗粒物污染物地面分布的一个有效手段.  相似文献   

20.
北京地区秋冬季大气污染特征及成因分析   总被引:1,自引:0,他引:1  
为了研究近两年北京地区PM2. 5污染特征及成因变化,利用常规观测资料和改进的后向轨迹模型(Traj Stat)对2016~2017年秋冬季大气重污染时段的颗粒物浓度、气象要素和气团传输路径进行了综合分析.结果表明,研究期间北京地区共发生13次持续2 d以上的重污染事件,冬季过程约占61. 5%,且污染程度和持续时间均高于秋季.地面受弱气压场控制、高湿度、静小风以及较低的混合层高度,加之北京三面环山的特殊地势是导致秋冬季静稳型污染频发的重要因素,重污染期间PM2. 5/PM10的平均比值高达0. 86.累积阶段气团主要来自于西北、偏西、西南和东南方向,其中西南和东南路径为典型污染传输通道,轨迹频率为21. 6%.此外,采用WRF-CAMx模型定量估算了2016年12月16~22日典型过程中本地和外来污染源对北京PM2. 5的贡献,结果发现不同气团输送条件下,二者的贡献差异较大.当南部气团输入时,本地贡献会显著下降,以外部区域输送为主导;若气流来自西北方向情况则相反.污染过程期间,本地贡献为16. 5%~69. 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号