首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苯和甲苯硝化及磺化反应热危险性分级研究   总被引:1,自引:1,他引:0  
首先介绍了化工工艺热安全性的内涵,并从反应过程热危险性分析的方法学出发,介绍间隙、半间歇化学反应工艺热危险性分级研究的总体思路及方法。然后,围绕甲苯和苯的硝化、磺化反应,用全自动反应量热仪(RC1e)和加速度量热仪(ARC)测定其反应过程的绝热温升(△Tad)、目标反应所能达到的最高温度(TM)、分解反应最大速率到达时间(θD)等参数。运用风险评价指数矩阵法(方法1)和基于失控过程温度参数的热危险评估法(方法2)分别对其硝化和磺化反应过程的热危险性进行了分级评估。结果表明,这两种方法具有良好的一致性;给定工艺条件下甲苯和苯的一段硝化反应过程的热危险度等级较低;而磺化反应的热危险较高。尽管这两种方法还有一定的局限性,但对于间歇、半间歇合成工艺的本质安全化设计、工艺热危险性的评估具有重要的参考价值和实用意义。  相似文献   

2.
采用反应量热仪(RC1e)、差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对环己酮过氧化反应过程的热失控危险性进行了研究,利用冷却失效情形法对该工艺进行危险性分级。结果表明:温度的升高使环己酮过氧化反应速率加快,体系比热容增加,温度升高也使产物各种中间体及副反应活跃程度增加,提高搅拌速度也能促进环己酮氧化,而延长加料时间可以将反应热量较好地移出,但同时降低反应速率,使过氧化环己酮得率降低。依据风险评价指数矩阵法和失控情景分析法,得到环己酮半间歇过氧化反应的热失控危险程度级别为5级,而降低环己酮的加入量,危险程度等级为2级。  相似文献   

3.
为预防磷酸铁锂(LiFePO_4)电池热失控事故,在燃烧试验箱中开展20 Ah LiFePO_4电池热失控试验,分析其在3种荷电状态(SOC)下的燃烧过程、温度特性、质量和电压变化;分析射流火焰演化过程,探讨SOC对电池表面温度、火焰温度和质量损失的影响,并划分电池的电压变化阶段。结果表明:20 Ah LiFePO_4电池燃烧过程中,热失控会发生2次,且第2次热失控危险性更高;最多会形成5次射流火焰并伴随有火焰推举现象;随着SOC的增加电池表面温度、失重、火灾危险性和质量损失速率越来越大,燃烧持续时间与SOC成反比; SOC对热失控发生时表面不同位置处的温度、火焰温度和电压影响不大。  相似文献   

4.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

5.
为加强甲烷热氯化工艺过程的安全管理,对氯化反应过程进行危险性分析。本研究介绍了氯甲烷的危害特性以及反应釜失控造成火灾爆炸的危险性,借助事故树分析法中结构重要度的排序获取基本原因事件,在此基础上运用解释结构模型(ISM)对氯化反应过程进行火灾爆炸危险性分析,根据所得基本原因事件的层级划分可得到造成事故发生的直接、间接以及根本原因,最终由ISM分析结果提出针对甲烷热氯化工艺火灾爆炸事故的安全对策措施。  相似文献   

6.
采用绝热加速量热仪(ARC)对分析纯过硫酸铵、含10%氯化钠杂质的过硫酸铵以及含10%二氧化硅杂质的过硫酸铵进行热分析实验,得到了实验过程中温度、温升速率和压力等数据,计算了3组样品的反应动力学参数,引入热惰性因子对实验数据进行修正,得到了3组样品在严格绝热条件下的热危险性参数,分析了3组样品的反应过程和热危险性。通过Semenov理论计算了3组样品的自加速分解温度(SADT)。结果表明,过硫酸铵加入氯化钠或二氧化硅杂质后,热危险性增大,自加速分解温度降低,更容易发生反应且反应更剧烈。  相似文献   

7.
反应量热仪RC1研究磺化反应过程中热危险性具有评价路线简单、易于操作、过程绿色环保等优势,近年来逐渐成为研究的热点.磺化反应过程中由于工艺的不同,不同磺化反应过程的热危险性也具有很大的差别.通过反应量热仪RC1、差示扫描量热DSC、绝热加速量热仪ARC对10种不同工艺的磺化反应过程的热危险进行了深入的研究,对企业实践生...  相似文献   

8.
为研究21700和18650新旧2型多用途锂离子电池在航空运输低压环境下的热失控特性差异,采用动压变温实验舱搭建实验平台开展实验。将实验环境压力设定为飞机巡航时的环境压力30 kPa,对比常压101 kPa,使用外部热源加热的方式触发锂电池热失控,利用热传播引发相邻电池热失控,分别从热失控温度变化特性、热释放速率和热解气体组分浓度变化进行分析。研究结果表明:能量密度更高的21700电池热失控峰值温度更高,高温危险性要高于18650电池,但触发热失控所需的热量更多,电池间热传播时间会延长;低压环境有利于降低锂电池热失控燃爆峰值温度,减小燃爆热释放速率,但会产生更多CxHy和CO等具有燃爆性的热解气体,可能会在有限空间内与氧气混合引起二次燃爆。  相似文献   

9.
为了系统研究环氧乙烷水溶液失控反应热动力学参数的变化规律,采用等温扫描量热仪C600和绝热量热仪VSP-2分别对环氧乙烷水溶液进行了量热试验研究,得到了纯环氧乙烷的热稳定性数据,以及不同质量分数环氧乙烷水溶液的起始放热温度、最高放热温度和压力、放热量、绝热温升及失控反应过程的温度、压力变化等。结果表明,纯环氧乙烷发生失控反应的起始温度接近360℃,其放热量高达2 600 k J/kg。水加入环氧乙烷能够显著降低体系的起始放热温度至200℃以下。随环氧乙烷水溶液质量分数升高,失控反应致灾后果的严重程度明显提高。最高温度和压力、温升和压升速率、放热量及绝热温升随环氧乙烷质量分数升高而增大,而达到最大反应速率的时间减小。  相似文献   

10.
为了研究连二亚硫酸钠热分解动力学及热失控危险性,利用同步热分析法(TG-DSC)测定了不同升温速率下连二亚硫酸钠热分解特性。采用非等转化率法和等转化率法探究其动力学参数,分析其反应机理,推断连二亚硫酸钠热危险性。结果表明,连二亚硫酸钠分解方式有两种,反应活化能在140~240 kJ/mol。利用活化能比较、失控反应可能性、严重度评价及SADT等方法均发现,连二亚硫酸钠在生产、存储中存在危险性失控可能性。因此,要严格执行连二亚硫酸钠安全储运国家标准,避免事故发生。  相似文献   

11.
为进一步验证间歇式反应系统的参数敏感性,预测热失控临界值,以硫酸催化乙酸酐水解反应作为研究对象,考察不同反应初始温度及反应初始浓度下反应温度的变化特性。采用基于雅克比矩阵迹的热失控临界判据,模拟计算硫酸催化乙酸酐水解反应系统参数敏感临界值。结果表明:反应温度对反应初始温度和初始浓度都有参数敏感性,当初始温度和初始浓度位于参数敏感临界值附近时,其微小变化将会引起温度急剧变化;用基于雅克比矩阵迹的判据预测反应系统热失控临界参数,临界判据计算的临界值与试验结果能很好地吻合。  相似文献   

12.
为明确锂电池的火灾危险性,对不同数量磷酸铁锂电池组火灾时的电池表面温度、火焰形态、火焰温度、热释放速率、质量损失损率以及可燃气体体积分数等燃烧特性参数进行试验研究。结果表明:磷酸铁锂电池组的热失控温度约200~300℃,呈现集中燃烧,气相火焰温度可达1 100℃;磷酸铁锂电池组电池数量增加,喷射火焰出现的次数增多,热释放速率峰值相应出现;电池组最大质量损失速率随电池数量的增加呈幂函数变化,放热量与电池数量的1. 28次方成正比。  相似文献   

13.
为研究锂电池在民航飞行低压特殊环境的安全性及发生热失控灾害后的高温危险性,通过可模拟飞行变动条件的动压变温实验舱开展系列实验,研究锂电池在不同低压环境下的(101,60,30 kPa)多节18650型锂离子电池热失控温度特性,采集电池池体温度及热失控喷射释放温度等参数。研究结果表明:随环境压力降低,圆柱锂电池间的热失控传播并不能被阻断,但锂电池热失控灾害所释放产生的高温区域减少,且高温持续时间变短,释放所产生温度的高温危险性随环境压力的降低而有所降低。  相似文献   

14.
为实现对醋酸乙烯(VAC)聚合反应热失控行为的风险评估及紧急抑制,采用VSP2绝热量热仪对醋酸乙烯聚合反应体系在不同危险场景条件下的热失控过程和失控抑制进行试验模拟。依据苏黎世危险性分析法(ZHA)中的失控反应严重度评估判据,评估醋酸乙烯聚合反应的热失控风险程度,提出紧急情况下抑制剂的加入时间及加入量。结果表明,醋酸乙烯聚合反应失控后绝热温升(ΔT_(ad))超过100℃,最大反应速率到达时间(TMRad)约为10 min,其热失控风险程度仅次于不可接受水平。聚合体系温度不高于73℃时,通过加入不低于参与聚合反应的醋酸乙烯质量20%的常温溶剂,可有效阻止失控反应发生。  相似文献   

15.
结合国内外对锂离子电动汽车火灾危险性与应急救援的研究情况,分析了锂离子电动汽车内外火灾危险性因素,尤其是根据目前电动汽车采用的电池组材料和工艺特性,分析了其在过充、外短路、高温、超压、机械冲击等外冲击条件下的火灾危险性。根据热失控情况下各组件的热释放速率和生烟量等数据,对该类火灾应急救援方面问题进行了讨论,为该类型电动汽车应急救援研究及相关标准制订提供参考。  相似文献   

16.
锂离子电池广泛应用的同时也出现了燃烧、爆炸等安全问题.针对锂电池热失控及火灾问题,综述了电池内部热失控演变过程、热失控气体释放及其燃爆风险,以及热失控和火灾发生时有毒有害气体的危害性等方面近年来的研究进展.最后提出今后主要研究方向是电池模块/电池包内热失控气体释放和流动过程研究、气体爆炸危险性动态变化规律研究和大容量高比能富镍电池单体/模块热失控特性和规律研究等.  相似文献   

17.
为研究磷酸活性炭的自燃危险性,以自制的磷酸活性炭(活化温度为300,500和700℃)为考察对象,利用同步热分析仪(STA)对活性炭氧化放热动力学进行试验研究。根据在2,5,10和20℃/min等4种不同升温速率下得到的活性炭DSC/TG曲线,结合Friedman-Reich-Levi动力学方法对反应过程中可能存在的反应机理进行初步判断。研究表明,随着活化温度的升高,活性炭的起始放热温度和最大放热温度随之升高;活性炭整个氧化反应过程中,活化能随着转化率的改变呈现一定规律性变化;碳氧化学反应和气体扩散共同影响活性炭氧化过程,且在不同阶段对氧化的贡献不同。  相似文献   

18.
7-氨基头孢烷酸(7-ACA)粉体在生产过程中存在燃爆危险性,为探究7-ACA粉体的燃爆机制,开展粉体燃烧特性试验。采用热重分析(TGA)方法研究10、20和30℃/min等3种升温速率下,7-ACA粉体燃烧的热动力学过程。结果表明:在升温速率为10℃/min下,7-ACA粉体最低着火温度为220℃,升温速率越大,最小着火温度越高,最大失重速率对应的温度越高。在整个反应过程中,裂解阶段活化能为7.347 kJ/mol,频率因子为1.4×10~7,反应为1.5级反应;燃烧阶段活化能为146.99 kJ/mol,频率因子为9.18×10~(11),反应为2级反应。整个过程热动力学参数值都不高,7-ACA粉体能被较小能量点燃,有燃爆危险。  相似文献   

19.
针对目前频发的锂离子电池热失控事故,自主设计并搭建了圆柱形锂离子电池热失控实验平台,对不同加热功率触发的锂离子电池热失控过程进行了实验研究。数据结果表明,外在热源功率对锂离子电池热失控行为影响很大。锂离子电池热失控过程中响应温度随加热棒功率的升高而降低,而最高温度随加热棒功率的升高而升高。通过对不同加热功率触发锂离子电池热失控特性的研究,可为锂离子电池的储存和运输安全性研究提供理论依据和工程技术参考。  相似文献   

20.
刘全义  韩旭  孙中正  吕志豪 《安全》2019,40(4):42-46
针对锂离子电池热失控引发的航空运输安全问题,自主设计并搭建锂离子电池热失控灾害演化及危险性分析实验平台。在敞开和密封环境体系下,对电加热触发荷电量(State of Charge,SOC)为0%、50%和100%的18650型锂离子电池热失控规律进行了实验研究。观察单体锂离子电池在敞开和密封体系中的热失控现象,并记录单体锂离子电池热失控时间、温度峰值及相应的温度变化。数据结果显示,相比敞开体系,密封体系有效的延缓了锂离子电池发生热失控的时间,并降低了锂离子热失控时释放的能量,为锂离子电池的航空运输安全性研究提供了理论依据和工程技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号