首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
催化氧化NO催化剂Mn/ZrO2的制备与性能研究   总被引:1,自引:0,他引:1  
以二氧化锆为载体负载锰氧化物,制备了MnO x/ZrO2催化剂用于催化氧化法(SCO)脱除烟气NO,考察了制备条件和反应条件对催化剂SCO活性的影响.同时,采用N2吸附、SEM、XRD及XPS等手段对催化剂理化性质进行了表征.结果表明,采用等体积浸渍法,以硝酸锰作为前驱体制备的Mn8/ZrO2/450催化剂在300℃、空速15000 h-1条件下,NO转化率可达84%,表现出较好的NO氧化活性.催化剂的主要活性组分为MnO2,在催化剂载体表面上呈现出较好的分散度.对催化剂进行了NO等温吸附与程序升温脱附,结合程序升温表面反应(TPSR)实验,探讨了催化剂表面NO催化氧化机理.研究发现,NO在该催化剂表面主要以吸附态反应,在含氧气氛中吸附态NO的氧化速率高于脱附速率,表面NO2的脱附峰温与最佳SCO活性温度相吻合.上述结果表明,NO转化过程速率受氧化产物NO2的脱附步骤控制,表面反应为快速步骤.  相似文献   

2.
Mn-Ce-Fe/TiO2低温催化还原NO的性能   总被引:15,自引:4,他引:11  
寻洲  童华  黄妍  童志权 《环境科学学报》2008,28(9):1733-1738
采用浸渍法制备了Mn-Ce-Fe/TiO2.研究了其组分配比、焙烧温度等制备条件和NO进口浓度、空速、O2含量、NH3/NO摩尔比等操作条件对Mn-Ce-Fe/TiO2 NH3低温还原NO活性的影响,并探讨了H2O、SO2对Mn-Ce-Fe/Ti O2活性的影响.结果表明,Mn:Fe:Ce摩尔比为5:2:4、500℃下焙烧的Mn-Ce-Fe/TiO2在无H2O、SO2,NO体积分数为0.1%,空速为5000h~,反应温度为130℃、O2含量为6%、NH3/NO摩尔比为1.1的条件下,NO转化率接近98%,Fe的加入大大提高了催化剂的单独抗水和同时抗硫抗水性能,130℃下,体积分数10%的H2O对该催化剂的活性基本没有影响,转化率保持在96%以上;通硫、水后的400min内,活性仅下降3%.单独通人S02时,该催化剂中毒程度较深.该催化剂有望应用于基本不含SO2的燃气锅炉烟气和不含SO2的硝酸尾气等NO,工业废气的低温脱硝.  相似文献   

3.
采用浸渍法制备了一系列以成型TiO2为载体的Mn-Co/TiO2低温SCR催化剂,研究分析了活性组分担载量、Mn含量、焙烧温度、焙烧时间等制备参数和进口NO浓度、空速、O2体积分数、NH3/N2摩尔比等操作条件对催化剂脱硝反应活性的影响.结果表明:活性组分担载量为30%,Mn/(Mn+Co)摩尔比为80%,在500℃下焙烧6 h得到的Mn-Co/TiO2催化剂具有较高的NO转化率;在进口NO浓度为600×10-6、O2体积分数6%、空速10000 h-1、150℃条件下,NO脱除率接近100%.  相似文献   

4.
采用浸渍法制备了系列V2O5/CeO2催化剂,用于低温NH3选择性催化还原(NH3-SCR)NO.同时,考察了催化剂中V2O5负载量和煅烧温度对催化活性的影响,并运用SEM,BET和XRD物理化学技术对催化剂进行了表征.结果表明,V2O5/CeO2催化剂对模拟烟气中的NO转化呈现出较高的活性,但是V2O5负载量和催化剂的催化活性并不呈线性递增的关系.当V2O5负载量超过10%时,催化剂的催化活性开始下降.随着煅烧温度的升高,由于钒酸铈的生成,催化剂的催化活性下降.400℃为最佳煅烧温度.  相似文献   

5.
低温等离子体改性对Fe2O3/ACF低温选择性催化还原NO的影响   总被引:2,自引:1,他引:1  
利用N2低温等离子体对过量溶液浸渍法制备的Fe2O3/ACF(活性炭纤维)催化剂进行了改性,运用BET比表面积、扫描电子显微镜(SEM)、X射线衍射光谱(XRD)和傅立叶变换红外光谱(FT\|IR)对催化剂进行表征.同时,对催化剂的NH3选择性催化还原(SCR)NO的催化性能进行了研究.结果表明,活性组分最佳负载量的质量分数为10.3%;N2等离子体改性最优改性电压为6kV,改性时间为3min;随着反应温度的升高,空白ACF上NO转化率先升高再下降,而催化剂上NO转化率呈上升趋势.在NO体积分数1000×10-6、NH3体积分数1000×10-6、O2体积分数5%、空速10040h-1和反应温度240℃的条件下,催化剂3.7%Fe2O3/ACF和10.3%Fe2O3/ACF经N2等离子体改性后,其NO转化率(相对于未改性的)分别提高了16.43%和6.84%.N2等离子体改性催化剂提高了活性组分在ACF上的分散度,增加了ACF表面的含氮官能团,从而提高了催化剂的SCR低温活性.  相似文献   

6.
以纳米TiO_2为载体,采用等体积浸渍法掺杂过渡金属氧化物ZrO_2进行改性,制备了一系列ZrO_2/TiO_2催化剂,以催化H_2O_2低温氧化NO脱硝,并采用X射线衍射(XRD)、H_2程序升温还原(H_2-TPR)、O_2程序升温氧化(O_2-TPO)、X射线光电子能谱(XPS)及电子顺磁共振(EPR)等表征分析探究了影响H_2O_2脱硝活性的因素.表征结果表明ZrO_2的负载量会影响催化剂中晶格氧的含量,晶格氧相对含量的增加有利于氧化还原反应中的电子传递,这是促进H_2O_2活化分解的关键.在微观表征的基础上,通过实验研究筛选获得了催化剂的最佳ZrO_2负载量,同时对比考察了非催化和纳米TiO_2催化作用下的H_2O_2氧化低温脱硝性能;针对获取的最优催化剂,进一步考察了不同烟气工况对催化剂活性的影响.实验结果表明,ZrO_2/TiO_2催化剂能有效促进H_2O_2的活化分解实现低温脱硝,且ZrO_2负载量为4%(质量分数)时,催化活性最高;在烟温为160℃、[H_2O_2]/[NO]物质的量比为2及空速为30000 h~(-1)时,NO转化率最高可达81%.  相似文献   

7.
H_2O和SO_2对Cr-Ce/TiO_2催化氧化NO性能的影响   总被引:3,自引:1,他引:2  
罗晶  童志权  黄妍  夏斌  罗河 《环境科学学报》2010,30(5):1023-1029
采用浸渍法在最佳制备条件下制备了新型Cr-Ce/TiO2催化剂,并对催化剂进行了BET和XRD表征.同时,考察了反应温度、H2O和SO2对该催化剂催化氧化NO性能的影响,并对中毒催化剂进行了FT-IR分析,讨论了中毒机理.结果表明,Cr-Ce/TiO2催化剂具有良好的NO氧化活性,在空速为10000h-1、O2体积分数8%(φ)、NO进口体积分数700×10-6条件下,反应温度250℃时NO转化率可达到59.7%,330℃时NO转化率可达到最大值80.7%.单独加入10%(φ)H2O或300×10-6(φ)SO2都可使催化剂活性降低,但在较高温度时影响较小.330℃下单独通入SO2和同时通入H2O与SO210h后,由于催化剂表面生成了少量硫酸盐和亚硫酸盐,活性下降并维持在62.4%左右,能够满足对NOx进行高效吸收的要求;停止通入H2O和SO2后,催化剂活性恢复到71.6%,加热处理后活性能进一步恢复到78.5%.该催化剂具有比文献中报道的其它NO氧化催化剂更强的抗H2O和SO2毒化能力.  相似文献   

8.
Fe-MnOx-CeO2/ZrO2低温催化还原NO性能研究   总被引:2,自引:2,他引:0  
刘荣  杨志琴 《环境科学》2012,33(6):1964-1970
以纳米ZrO2为载体,用浸渍法制备出Fe-MnOx-CeO2/ZrO2催化剂,考察了活性组分配比和助剂负载量对催化剂低温NH3选择性催化还原NO活性的影响,并对催化剂进行了XRD、SEM、EDS和BET表征;探讨了温度、H2O和SO2对Fe-MnOx-CeO2/ZrO2催化剂低温下NH3选择性催化还原NO的影响,结果表明,无SO2和H2O条件下,8%Fe-10%MnOx-CeO2/ZrO2催化剂具有良好的催化活性和稳定性.120℃时,催化剂的脱硝效率为85.23%,当温度升至180℃时,脱硝效率可达到92.0%.SO2和H2O共存条件下,催化剂易失活,采用傅立叶变换红外光谱对各反应阶段的催化剂进行了表征,对其失活机制进行深入研究,结果表明,催化剂失活的主要原因是催化剂表面硫酸铵盐的沉积和催化剂本身活性成分的硫酸盐化.  相似文献   

9.
催化湿式氧化法降解水中的β-萘酚   总被引:1,自引:0,他引:1  
刘杰  于超英  赵培庆  陈革新 《环境科学》2012,33(11):3826-3832
采用催化湿式氧化法降解β-萘酚,制备了一系列MnOx/nano-TiO2催化剂,对其制备条件、反应条件及催化剂的稳定性进行了研究,同时对催化剂进行了X射线衍射(XRD)、X射线光电子能谱(XPS)及程序升温还原(TPR)等表征.结果表明,Mn负载量过高时,高分散的MnO2和Mn2O3聚集形成相应的晶相,导致了β-萘酚COD去除率的降低;焙烧温度过高时,可能是因为形成较多活性较差的Mn2O3,MnO2和Mn2O3之间的电子传递作用被削弱,造成COD去除率的降低;催化剂使用6次后COD去除率略微降低可能是和对应的衍射峰峰强度下降有关.当Mn负载量(质量分数)为4%、焙烧温度为450℃时所制备的MnOx/nano-TiO2催化剂活性较好,其在反应温度为110℃、反应总压力为0.5 MPa的条件下催化β-萘酚降解时COD去除率可达96.4%.该催化剂重复使用6次后β-萘酚COD去除率仍可达92.4%.采用原子吸收光谱(AAS)分别测定50、80、110及150℃时反应后溶液中Mn的溶出量,均低于9.3 mg·L-1,催化剂稳定性较好.根据文献对β-萘酚的降解路径进行了推测.  相似文献   

10.
Pd/CeO2-Al2O3对烟气中多环芳烃的催化氧化性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了不同负载量及不同钯铈比(Pd:Ce)的Pd/CeO2-Al2O3催化剂,并结合XRD、BET、SEM、O2-TPD和H2-TPR等方法对催化剂的性质进行了表征,研究了所制备的催化剂对燃煤烟气中多环芳烃(PAHs)的催化转化效率.XRD和SEM结果表明,Ce和Pd在Al2O3表面呈高度分散状态,有利于PAHs的催化氧化.BET测试表明,Ce的引入改变了催化剂表面孔径结构,提高其比表面积.O2-TPD和H2-TPR测试表明,适当钯铈比条件下制备的催化剂有较强的储氧能力和活性.催化氧化实验结果表明,所制备的Pd/CeO2-Al2O3催化剂对PAHs具有较高的转化效率,其平均转化率均在80%以上,且PAHs的毒性当量显著降低,钯铈比对PAHs的催化氧化性能影响较大,当催化剂的钯铈比为1:1时,PAHs的转化率最高,可达90%以上.  相似文献   

11.
锰前驱体对MnO_x/TiO_2催化剂低温选择性催化还原NO_x影响   总被引:1,自引:0,他引:1  
以醋酸锰和硝酸锰为前趋体通过浸渍法制备了MA和MN两种系列的MnOx/TiO2催化剂,结合BET、XRD、TPR及FT-IR等手段对催化剂进行了表征,并进行了比较,同时对两种系列的催化剂进行了选择催化还原脱硝的活性测试。结果表明,MA和MN均具有良好的低温催化活性,脱销效率随温度的变化趋势基本相同,在80℃时已经达到80%的脱硝效率;随着温度的升高,在200℃时效率上升至接近100%。通过对催化剂性能测试比较表明,锰的含量对于催化剂的活性有一定的影响。总体上看,MN具有更好的活性,脱销效率较高,并且其活动的窗口也是相对更宽,可能是因为以硝酸锰为前躯体制的的催化剂中MnO2的含量相对较多,即两类前驱体在制备过程中与载体之间的相互作用不同,导致最终催化剂表面活性组分MnOX结构和价态的不同,从而影响催化剂的低温活性。  相似文献   

12.
SnO2-TiO2负载CuO催化剂的CO氧化催化性能   总被引:3,自引:1,他引:2  
对2种n-型半导体的复合氧化物负载的氧化铜催化剂的CO氧化催化性能进行了研究,采用程序升温反应方法,得到CO转化率随反应温度的变化曲线,CO最低全转化温度越低,活性越好。考察了载体的不同制备方法如成胶方法、干燥方法,焙烧温度以及不同SnO2:TiO2摩尔比对CO2氧化性能的影响。  相似文献   

13.
不同煅烧温度制备的Mn、N掺杂TiO2光催化性能研究   总被引:3,自引:3,他引:0  
以MnSO4·H2O为锰源,尿素为氮源,采用溶胶-凝胶法制备不同锻烧温度的纯TiO2、Mn-TiO2及Mn-N-TiO2光催化剂,利用X射线衍射、紫外-可见光漫反射光谱及电子自旋共振等技术对样品形貌和结构进行表征,并以罗丹明B的光催化降解为模型反应,考察不同锻烧温度对其光催化活性的影响.结果表明,Mn、N成功掺入TiO2后,有利于提高光催化剂的热稳定性,抑制锐钛矿相向金红石相转化,且光吸收拓展到可见光区域.Mn、N共掺杂样品比单Mn掺杂样品具有更高的光催化活性,400℃下锻烧的Mn-N-TiO2在可见光下对罗丹明B的降解具有最高的光催化活性,光照2h降解率达到100%.高温锻烧Mn-N-TiO2和Mn-TiO2样品在紫外光照射30min后对罗丹明B的降解率在90%以上.  相似文献   

14.
The catalysts of iron-doped Mn-Ce/TiO 2(Fe-Mn-Ce/TiO 2) prepared by sol-gel method were investigated for low temperature selective catalytic reduction(SCR) of NO with NH 3.It was found that the NO conversion over Fe-Mn-Ce/TiO 2 was obviously improved after iron doping compared with that over Mn-Ce/TiO 2.Fe-Mn-Ce/TiO 2 with the molar ratio of Fe/Ti = 0.1 exhibited the highest activity.The results showed that 96.8% NO conversion was obtained over Fe(0.1)-Mn-Ce/TiO 2 at 180°C at a space velocity of 50,000 hr 1.Fe-Mn-Ce/TiO 2 exhibited much higher resistance to H 2 O and SO 2 than that of Mn-Ce/TiO 2.The properties of the catalysts were characterized using X-ray diffraction(XRD),N 2 adsorption,temperature programmed desorption(NH 3-TPD and NOx-TPD),and Xray photoelectron spectroscopy(XPS) techniques.BET,NH3-TPD and NOx-TPD results showed that the specific surface area and NH3 and NOx adsorption capacity of the catalysts increased with iron doping.It was known from XPS analysis that iron valence state on the surface of the catalysts were in Fe3+ state.The doping of iron enhanced the dispersion and oxidation state of Mn and Ce on the surface of the catalysts.The oxygen concentrations on the surface of the catalysts were found to increase after iron doping.Fe-Mn-Ce/TiO2 represented a promising catalyst for low temperature SCR of NO with NH3 in the presence of H2 O and SO2.  相似文献   

15.
IntroductionTiO2 iswidelyusedinmultiphasephoto catalyticreactions ,andisalsooneofthemosteffectivecatalystsinthedegradationofenvironmentalcontaminants (Hoffmann ,1995 ;Fujishima ,2 0 0 0 ) .However,asasemiconductorofwidebandgap ,itcouldonlybeactivatedbyult…  相似文献   

16.
Ce-ZrO2 is a widely used three-way catalyst support.Because of the large surface area and excellent redox quality,Ce-ZrO2 may have potential application in selective catalytic reduction(SCR) systems.In the present work,Ce-ZrO2 was introduced into a low-temperature SCR system and CeO2 and ZrO2 supports were also introduced to make a contrastive study.Mn/CeO2,Mn/ZrO2 and Mn/Ce-ZrO2 were prepared by impregnating these supports with Mn(NO3)2 solution,and have been characterized by N2-BET,XRD,TPR,TPD,XPS,FT-IR and TG.The activity and resistance to SO2 and H2O of the catalysts were investigated.Mn/Ce-ZrO2 and Mn/CeO2 were proved to have better low-temperature activities than Mn/ZrO2,and yielded 98.6% and 96.8% NO conversion at 180°C,respectively.This is mainly because Mn/Ce-ZrO2 and Mn/CeO2 had higher dispersion of manganese oxides,better redox properties and more weakly adsorbed oxygen species than Mn/ZrO2.In addition,Mn/Ce-ZrO2 showed a good resistance to SO2 and H2O and presented 87.1% NO conversion,even under SO2 and H2O treatment for 6 hours,and the activity of Mn/Ce-ZrO2 was almost restored to its original level after cutting off the injection of SO2 and H2O.This was due to the weak water absorption and weak sulfation process on the surface of the catalyst.  相似文献   

17.
Mn-Ce-Co/TiO2催化剂低温脱硝活性研究   总被引:4,自引:4,他引:0  
以纳米TiO2为载体,通过浸渍法制备一系列改性Mn-Ce/TiO2脱硝催化剂.通过实验考察不同元素组分催化剂的脱硝活性,同时探讨金属氧化物掺杂对提高催化剂低温脱硝活性的机理.活性测试结果显示,Co掺杂能最有效地提高Mn-Ce/TiO2催化剂在低温段的SCR脱硝活性,在n(Co):n(TiO2)=0.08~0.10、体积空速为35100h-1的条件下,催化剂在120℃时就能达到80%以上的NO去除率,140℃左右时的NO去除率接近100%.BET、XRD、TPR、TPD等表征测试结果表明,Co掺杂可改进Mn-Ce/TiO2催化剂的物化特性,增加催化剂表面的活性酸位点及活性氧数量,提高催化剂的氧化还原能力,从而提高Mn-Ce/TiO2催化剂低温SCR脱硝活性.  相似文献   

18.
纳米TiO_2-Al_2O_3负载CuMnO_x对甲苯的催化燃烧   总被引:1,自引:0,他引:1  
研究采用改进的溶胶-凝胶法制备了TiO2-Al2O3复合载体,并用浸渍法制备CuMnOX/TiO2-Al2O3催化剂,通过对甲苯废气催化燃烧的实验,分别考察了Cu-Mn负载量、Cu/Mn摩尔比、焙烧温度及载体对催化剂制备过程及催化剂活性的影响。实验结果表明:活性组分负载量25%,铜锰活性组分的配比Cu:Mn=1:2,焙烧温度500℃是浸渍法制备CuMnOX/TiO2-Al2O3催化剂较佳的工艺条件;XRD衍射图谱表明,500℃下铜锰尖晶石的存在是催化剂催化活性优良的主要原因;由复合载体制备的CuMnOX/TiO2-Al2O3催化剂比单一载体制备的CuMnOX/Al2O3催化剂具有更高的甲苯转化率,其T99比单一载体要低20℃以上。  相似文献   

19.
采用浸渍法制备了一系列不同钒和钨负载量的V2O5-WO3/TiO2催化剂样品,对样品NH3选择性催化还原NO性能进行了评价,并用BET、XRD、XPS等手段对催化剂样品的表面形态进行了表征.研究发现,钒的负载量对催化剂的比表面积和催化活性有显著影响,当钒负载量从1%升高到8%时,催化剂比表面积下降了16 m2/g,最高活性温度降低了约100℃.钨起到稳定剂和助剂的双重作用,当钒负载量为1%时,钨负载量从0升高到6%,催化剂比表面积仅下降了3 m2/g,而活性温度窗口向高温和低温各拓宽了约50℃.研究表明钒和钨负载量都能影响催化剂表面的VOx物种,但对催化剂的表面晶型没有明显影响.  相似文献   

20.
Introduction Aromatic sulfonic acid, which is produced in large amounts in chemical industry since the end of 19th century, has been widely applied in many industrial processes, including the various steps of procedure (Alonso and Barcelo, 2000). Naphthalene- sulfonic acids are of importance as dye intermediates and commonly used in the textile auxiliary industry employing many azo dyes and pigments. Among them, 1-naphthol-5-sulphonic acid (L-acid) is widely used in the printing as the raw ma…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号