首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR.  相似文献   

2.
In this study, a lab-scale biological anaerobic/anaerobic/anoxic/membrane bioreactor(A_-~3MBR) was designed to treat wastewater from the ethanol fermentation of food waste,a promising way for the disposal of food waste and reclamation of resources. The 454 pyrosequencing technique was used to investigate the composition of the microbial community in the treatment system. The system yielded a stable effluent concentration of chemical oxygen demand(202 ± 23 mg/L), total nitrogen(62.1 ± 7.1 mg/L), ammonia(0.3 ±0.13 mg/L) and total phosphorus(8.3 ± 0.9 mg/L), and the reactors played different roles in specific pollutant removal. The exploration of the microbial community in the system revealed that:(1) the microbial diversity of anaerobic reactors A_1 and A_2, in which organic pollutants were massively degraded, was much higher than that in anoxic A_3 and aerobic MBR;(2) although the community composition in each reactor was quite different, bacteria assigned to the classes Clostridia, Bacteroidia, and Synergistia were important and common microorganisms for organic pollutant degradation in the anaerobic units, and bacteria from Alphaproteobacteria and Betaproteobacteria were the dominant microbial population in A_3 and MBR;(3) the taxon identification indicated that Arcobacter in the anaerobic reactors and Thauera in the anoxic reactor were two representative genera in the biological process. Our results proved that the biological A_-~3MBR process is an alternative technique for treating wastewater from food waste.  相似文献   

3.
The chemical oxygen demand (COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor (MBR) coupled with worm reactors (SSBWR) were evaluated for 210 days. The obtained results were compared to those from a conventional MBR (C-MBR) operated in parallel. The results indicated that the combined MBR (S-MBR) achieved higher COD and NH3-N removal efficiency, slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas, Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment.  相似文献   

4.
生物膜—膜生物反应器脱氮除磷性能   总被引:12,自引:1,他引:11       下载免费PDF全文
在膜生物反应器中投加聚乙烯悬浮填料,考察生物膜—膜生物反应器对生活污水中污染物质去除效果.结果表明,投加悬浮填料使膜生物反应器去除有机污染物质的能力得到增强,总氮、总磷的平均去除率由45.5%和47.2%分别增至57.4%和71.8%.投加悬浮填料还可以延缓膜污染,膜生物反应器中膜丝比流量在试验结束时为0.1L/(hkPa),而未投加悬浮填料的膜生物反应器中膜丝比流量降至0.036L/(hkPa).  相似文献   

5.
Sewage discharge could be a major source of polycyclic aromatic hydrocarbons(PAHs) in the coastal waters. Stonecutters Island and Shatin Sewage Treatment Works(SCISTW and STSTW)in Hong Kong, adopted chemically enhanced primary treatment and biological treatment,respectively. This study aimed at(1) determining the removal efficiencies of PAHs,(2) comparing the capabilities in removing PAHs, and(3) characterizing the profile of each individual PAHs, in the two sewage treatment plants(STPs). Quantification of 16 PAHs was conducted by a Gas Chromatography. The concentrations of total PAHs decreased gradually along the treatment processes(from 301 ± 255 and 307 ± 217 ng/L to 14.9 ± 12.1 and 63.3 ± 54.1 ng/L in STSTW and SCISTW, respectively). It was noted that STSTW was more capable in removing total PAHs than SCISTW with average total removal efficiency 94.4% ± 4.12% vs. 79.2% ± 7.48%(p 0.05). The removal of PAHs was probably due to sorption in particular matter, confirmed by the higher distribution coefficient of individual and total PAHs in solid samples(dewatered sludge contained92.5% and 74.7% of total PAHs in SCISTW and STSTW, respectively) than liquid samples(final effluent-total contained 7.53% and 25.3% of total PAHs in STSTW and SCISTW, respectively).Despite the impressive capability of STSTW and SCISTW in removing PAHs, there was still a considerable amount of total PAHs(1.85 and 39.3 kg/year, respectively for the two STPs) being discharged into Hong Kong coastal waters, which would be an environmental concern.  相似文献   

6.
The optical properties of aerosol as well as their impacting factors were investigated at a suburb site in Nanjing during autumn from 14 to 28 November 2012. More severe pollution was found together with lower visibility. The average scattering and absorption coefficients(B sca and B abs) were 375.7 ± 209.5 and 41.6 ± 18.7 Mm~(-1), respectively. Higher ?ngstr?m absorption and scattering exponents were attributed to the presence of more aged aerosol with smaller particles. Relative humidity(RH) was a key factor affecting aerosol extinction. High RH resulted in the impairment of visibility, with hygroscopic growth being independent of the dry extinction coefficient. The hygroscopic growth factor was 1.8 ± 1.2 with RH from 19% to 85%.Light absorption was enhanced by organic carbon(OC), elemental carbon(EC) and EC coatings,with contributions of 26%, 44% and 75%(532 nm), respectively. The B sca and B abs increased with increasing N_(100)(number concentration of PM_(2.5)with diameter above 100 nm), PM_1 surface concentration and PM_(2.5)mass concentration with good correlation.  相似文献   

7.
The objective of this study was to compare the effects of repeated field applications of three urban compost amendments and one farmyard manure amendment over a 9-year period on aggregate stability in a silty loam soil initially characterized by low clay and initial organic matter contents and poor aggregate stability. Three different aggregate stability tests with increasing disruptive intensities (fast wetting > mechanical breakdown > slow wetting tests) and different disaggregation mechanisms, were used. All of the amendments, which were applied at approximately 4 Mg C ha−1 every other year, increased the organic carbon content and improved the stability of the aggregates against the disruptive action of water, as determined by each of the stability tests. However, the year-to-year variations in the aggregate stability that related to factors other than the organic inputs were greater than the cumulative increase in aggregate stability relative to the control. The positive effects of the tested amendments on aggregate stability were linked to their contribution to soil organic C contents (r = 0.54 for the fast wetting test and r = 0.41-0.42 for the mechanical breakdown and slow wetting tests; p < 0.05). The addition of urban composts had a larger positive effect on aggregate stability than farmyard manure at the majority of sampling dates. The addition of biodegradable immature compost, such as municipal solid waste (MSW), improved the aggregate stability through an enhanced resistance to slaking. The addition of mature composts, such as the co-compost of sewage sludge and green wastes (GWS) or biowaste compost (BW), improved the aggregate stability by increasing interparticular cohesion. The MSW compost was the most efficient in improving aggregate stability during the first 6 years of the experiment (average improvements of +22%, +5% and +28% in the fast wetting, mechanical breakdown and slow wetting tests, respectively, compared to the control treatment); this result was likely due to the larger labile organic pool of the MSW compost that was highly effective at stimulating soil microbial activity. After the first 6 years, the two other composts, GWS and BW, became more efficient (average improvements of +25%, +61% and +33% in the fast wetting, mechanical breakdown and slow wetting tests, respectively, compared to the control treatment), which was probably linked to the greater increase in soil organic C contents. Therefore, the application of urban compost to silty soil that is susceptible to water erosion was effective at improving aggregate stability and thus could be used to enhance the resistance of soil to water erosion.  相似文献   

8.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to − 350 mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0 tons/ha under 100% water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C.  相似文献   

9.
Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42 mg/L, 3.33 mg/L, 0.22 mg/L, 2.56 mg/L, and 0.61 mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively.  相似文献   

10.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.  相似文献   

11.
填埋场渗滤液性质复杂,普遍采用生物处理与深度处理多单元串联工艺;但是,因缺乏对工程运行规模中各单元污染物处理贡献的评估数据,使优化单元组合方式缺少理论依据.因此,本文采用常规和荧光光谱指标结合的方法,对以采用"膜生物反应器(membrane biological reactor,MBR)+纳滤(nanofiltration,NF)"工艺、处理能力800 m3·d-1的工程设施为对象,分析该组合工艺各单元对长填龄渗滤液处理贡献;同时,利用三维荧光-平行因子分析方法(excitation emission matrix fluorescence spectroscopy-parallel factor,EEM-PARAFAC)评估渗滤液中溶解性有机物(dissolved organic matters,DOM)性质的变化.结果表明,生物处理阶段对溶解性氮(dissolved nitrogen,DN)去除贡献率为74.7%,其中一级反硝化单元对DN去除贡献率为54.6%,外置式超滤单元对溶解性化学需氧量(dissolved chemical oxygen demand,sCOD)和溶解性碳(dissolved oganic carbon,DOC)降低贡献率分别为92.2%和93.3%,纳滤单元可有效去除重金属和盐分,但能力有限.通过追踪长填龄渗滤液DOM变化发现,一级反硝化单元可去除长填龄渗滤液中75.4%的类蛋白物质,超滤单元主要截留亲水性较高的DOM,而高芳香性的腐殖质主要通过纳滤截留,腐殖化程度越高截留效果越好.研究结果提示,处理长填龄渗滤液时,MBR工艺生物处理单元可适当简化,超滤单元则应预防堵塞.  相似文献   

12.
Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2 O were used to prepare poly(vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation(DCMD) of 3.5 g/L Na Cl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol(PEG),organic acids, Li Cl, Mg Cl2, and Li Cl/H2 O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate(DBP) showed a nonporous surface and symmetrical cross-section. When H2 O and Li Cl/H2 O mixtures were also used as additives, they were beneficial for solid–liquid demixing, especially when Li Cl/H2 O mixed additives were used. The membrane prepared with 5% Li Cl + 2% H2 O achieved a flux of24.53 kg/(m2·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.  相似文献   

13.
There have been no landscape-scale assessments which quantify the relative importance of the organic and mineral properties of BS (bed sediment) and associated catchment characteristics (geology, land cover and mean topsoil phosphorus (P) content) for BSP concentration. Mid infra red diffuse reflectance spectrometry was applied to estimate the quantities of organic matter, dithionite extractable aluminium- (Ald) and iron (Fed), kaolinite, dioctahedral clay and mica (D&M) minerals in 1052 snapshot samples of fine (<150 μm) BS in small to medium-sized (5-55 km2) agricultural headwater catchments across a large area (15 400 km2) of central England. Analyses included estimates of BS specific surface area, cerium (Ce) concentrations (enriched in P-bearing apatite and P-fertilsers), and catchment average topsoil P content.Simple linear regression demonstrated that the proportion of variance in BSP explained by specific components of BS across all catchments declined in the following order: Ald > Fed > topsoil P = kaolinite = residual iron> organic matter = Ce> D&M > mineral SSA. No single component accounted for more than 36% of the variance in BSP. Multiple regression - including a classification of bedrock lithology and proportions of arable and grassland by area - accounted for 61.9% of the variance in BSP. The proportion of arable and grassland by area in each catchment was also a statistically significant predictor of BSP. Across this large region - with widely differing geology and soils - Fed in BS is more strongly associated with kaolinite than D&M minerals because iron-oxyhydroxides and kaolinite form contemporaneously during pedogenesis. The SSA of fine bed sediments is largely determined by catchment area, fitted accurately using a power function.  相似文献   

14.
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, pH = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.  相似文献   

15.
MBR与SMBR脱氮除磷特性及膜污染控制   总被引:1,自引:1,他引:0  
郭小马  赵焱  王开演  赵阳国 《环境科学》2015,36(3):1013-1020
为提高污水深度处理效能和工艺运行的稳定性,研究以序批式膜生物反应器(SMBR)与传统膜生物反应器(MBR)为对象,对比研究其脱氮除磷特性、缺氧时间对工艺效率的影响及膜污染控制策略,同时应用分子生物学技术对两种工艺中微生物群落结构和组成进行分析.结果表明,间歇曝气能强化系统脱氮,使SMBR工艺去除总氮效果优于MBR,而在氨氮、总磷、COD、浊度去除方面两者无明显差异,去除率分别为94%、78%、80%、97%.延长SMBR工艺缺氧时间对COD、氨氮去除无显著影响,降低了总氮、总磷的去除率,总氮去除率由61%下降到46%,总磷由74%下降到52%.采用间歇曝气和投加一定浓度的粉末活性炭(PAC)均有利于减缓膜污染.微生物群落分析发现,两种工艺中微生物群落结构和组成无显著差异,硝化螺菌属(Nitrospira)和脱氯单胞菌属(Dechloromonas)为系统中的高丰度功能菌群,为工艺高效运行提供了生物学基础.  相似文献   

16.
With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°× 0.25° and a temporal resolution of1 month was established based on the moderate resolution imaging spectroradiometer(MODIS) Thermal Anomalies/Fire Daily Level3 Global Product(MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO_2, CO, CH_4,nonmethane volatile organic compounds(NMVOCs), N_2O, NO_x, NH_3, SO_2, fine particles(PM2.5),organic carbon(OC), and black carbon(BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43,1.09, 0.34, and 0.06 Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June(37%).Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N_2O to a high of within ± 169% for NH_3.  相似文献   

17.
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice–wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~ 500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season (p < 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m2·hr) in the FACE, FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice–wheat field annual rotation ecosystem (p < 0.05).  相似文献   

18.
IntroductionThedyeingwastewaterofwoolenmillcontainsalotkindsofpollutants,suchasacidicdyes,dispersedyes,mordantdyes,auxiliaries,saltsandsoon .Theeffluentsfromwastewatertreatmentplantsfortreatmentofthedyeingwastewaterofwoolenmillswithnormalbiologicalproce…  相似文献   

19.
Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration (DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.0 × 1013 m− 1 in the first 70 hr before a jump occurred. Furthermore, the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand (COD) concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation.  相似文献   

20.
Ozone (O3) concentration and flux (Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3 exposure-response models. The results showed that: (1) During the growing season (7 March to 7 June, 2012), the minimum (16.1 ppbV) and maximum (53.3 ppbV) mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppbV, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature. (2) The mean diurnal variation of deposition velocity (Vd) can be divided into four phases, and the maximum occurred at noon (12:00). Averaged Vd during daytime (6:00–18:00) and nighttime (18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured Vd was about 1.5 cm/sec. The magnitude of Vd was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity. (3) The maximum mean Fo appeared at 14:00, and the maximum measured Fo was − 33.5 nmol/(m2·sec). Averaged Fo during daytime and nighttime were − 6.9 and − 1.5 nmol/(m2·sec), respectively. (4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average (5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号