首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Kurokawa H  Nakashizuka T 《Ecology》2008,89(9):2645-2656
There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.  相似文献   

2.
Jonard M  Andre F  Ponette Q 《Ecology》2006,87(9):2306-2318
In mixed-species stands, modeling leaf litter dispersal is important to predict the physical and chemical characteristics of the forest floor, which plays a major role in nutrient cycling and in plant population dynamics. In this study, a spatially explicit model of leaf litterfall was developed and compared with two other models. These three models were calibrated for a mixed forest of oak and beech using litterfall data from mapped forest plots. All models assumed that an allometric equation described individual leaf litter production, but they strongly differed in the modeling of the probability density of leaf shedding with distance from source trees. Two models used a negative exponential function to account for leaf dispersal with distance, and this function was allowed to vary according to wind direction in one of them. In contrast, our approach was based on a simple ballistic equation considering release height, wind speed, wind direction, and leaf fall velocity; the distributions of wind speeds and wind directions were modeled according to a Weibull and a Von Mises distribution, respectively. Using an independent validation data set, all three models provided predictions well correlated to measurements (r > 0.83); however, the two models with a direction-dependent component were slightly more accurate. In addition, parameter estimates of the ballistic model were in close agreement with a foliar litter production equation derived from the literature for beech and with wind characteristics measured during leaf litterfall for both species. Because of its mechanistic background, such a spatially explicit model might be incorporated as a litterfall module in larger models (nutrient cycling, plant population dynamics) or used to determine the manner in which patch size in mixed-species stands influences litter mixture.  相似文献   

3.
以大兴安岭地区不同年份火烧迹地土壤动物为研究对象,对火烧后不同恢复时间土壤动物群落多样性及相关指数的变化进行分析.结果表明,大型土壤动物的个体数、DIC指数、丰富度指数及优势度指数变化趋势均表现为火烧恢复初期迅速增加,然后缓慢增加并逐渐接近对比样地值;如果不考虑8 a迹地数据极大值的影响,中小型土壤动物的个体数、DIC指数、丰富度指数及优势度指数也大致呈现火烧恢复初期迅速增加,然后缓慢增长的趋势;在垂直方向上,大型土壤动物DIC指数、个体数及丰富度指数在0~5 cm最大,向上、向下减少,而中小型土壤动物的各项指数都是凋落物层最大,向下迅速减小;相关分析表明,大型和中小型土壤动物的个体数和丰富度指数与DIC指数都具有极高的相关性;群落相似性分析显示,各火烧迹地间土壤动物群落具有较高的相似性.图1表3参26  相似文献   

4.
Abstract:  Our understanding of fire and grazing is largely based on small-scale experimental studies in which treatments are uniformly applied to experimental units that are considered homogenous. Any discussion of an interaction between fire and grazing is usually based on a statistical approach that ignores the spatial and temporal interactions on complex landscapes. We propose a new focus on the ecological interaction of fire and grazing in which each disturbance is spatially and temporally dependent on the other and results in a landscape where disturbance is best described as a shifting mosaic (a landscape with patches that vary with time since disturbance) that is critical to ecological structure and function of many ecosystems. We call this spatiotemporal interaction pyric herbivory (literal interpretation means grazing driven by fire). Pyric herbivory is the spatial and temporal interaction of fire and grazing, where positive and negative feedbacks promote a shifting pattern of disturbance across the landscape. We present data we collected from the Tallgrass Prairie Preserve in the southern Great Plains of North America that demonstrates that the interaction between free-roaming bison ( Bison bison ) and random fires promotes heterogeneity and provides the foundation for biological diversity and ecosystem function of North American and African grasslands. This study is different from other studies of fire and grazing because the fires we examined were random and grazing animals were free to roam and select from burned and unburned patches. For ecosystems across the globe with a long history of fire and grazing, pyric herbivory with any grazing herbivore is likely more effective at restoring evolutionary disturbance patterns than a focus on restoring any large vertebrate while ignoring the interaction with fire and other disturbances .  相似文献   

5.
The cascading effects of biodiversity loss on ecosystem functioning of forests have become more apparent. However, how edge effects shape these processes has yet to be established. We assessed how edge effects alter arthropod populations and the strength of any resultant trophic cascades on herbivory rate in tropical forests of Brazil. We established 7 paired forest edge and interior sites. Each site had a vertebrate-exclosure, procedural (exclosure framework with open walls), and control plot (total 42 plots). Forest patches were surrounded by pasture. Understory arthropods and leaf damage were sampled every 4 weeks for 11 months. We used path analysis to determine the strength of trophic cascades in the interior and edge sites. In forest interior exclosures, abundance of predaceous and herbivorous arthropods increased by 326% and 180%, respectively, compared with control plots, and there were significant cascading effects on herbivory. Edge-dwelling invertebrates responded weakly to exclusion and there was no evidence of trophic cascade. Our results suggest that the vertebrate community at forest edges controls invertebrate densities to a lesser extent than it does in the interior. Edge areas can support vertebrate communities with a smaller contingent of insectivores. This allows arthropods to flourish and indirectly accounts for higher levels of plant damage at these sites. Increased herbivory rates may have important consequences for floristic community composition and primary productivity, as well as cascading effects on nutrient cycling. By interspersing natural forest patches with agroforests, instead of pasture, abiotic edge effects can be softened and prevented from penetrating deep into the forest. This would ensure a greater proportion of forest remains habitable for sensitive species and could help retain ecosystem functions in edge zones.  相似文献   

6.
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.  相似文献   

7.
DeLuca TH  Sala A 《Ecology》2006,87(10):2511-2522
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.  相似文献   

8.
马川  董少锋  莫江明 《生态环境》2012,21(4):647-653
为了了解我国南方森林常见的人为干扰(凋落物收取)活动对生态系统养分循环的影响,研究了鼎湖山马尾松林3种主要树种凋落物分解及其养分释放对凋落物输入量变化的响应。这3种树种分别为马尾松(Pinus massoniana)、荷木(Schimasuperba)和锥栗(Castanopsis chinensis)。凋落物输入量变化分别为凋落物去除(L-)、加倍(L+)和对照(L)3种处理,每种处理25个重复。经过18个月的处理试验,凋落物分解速率及其养分释放随树种、分解阶段和凋落物处理不同而异。荷木、马尾松和锥栗分解物平均残留率分别为0.46±0.01、0.42±0.01、0.40±0.02,其中,荷木与锥栗、马尾松差异性显著。不同处理间的凋落物分解速率差异显著,加倍、对照和去除处理样地凋落物的平均残留率分别为0.51±0.08、0.53±0.09和0.55±0.08。凋落物加倍处理促进了凋落物分解过程中C的释放,而去除凋落物处理则抑制了N、P的释放。以上结果表明,凋落物收取活动不仅直接带走凋落物中的大量养分,而且抑制了凋落物分解及其养分释放。  相似文献   

9.
Abstract: Fire is frequently used for land management purposes and may be crucial for effective control of invasive non‐native plants. Nevertheless, fire modifies environments and may affect nontarget native biodiversity, which can cause conflicts for conservation managers. Native Australian reptiles avoid habitat invaded by the alien plant rubber vine (Cryptostegia grandiflora) and may be susceptible to the impacts of burning, a situation that provides a model system in which to examine possible conservation trade‐offs between managing invasive plants and maintaining native biodiversity. We used replicated, experimental fire treatments (unburned, dry‐season burned, and wet‐season burned) in 2 habitats (riparian and adjacent open woodland) to examine the short‐ (within 12 months of fire) and longer‐term (within 3 years of fire) changes of reptile assemblages in response to wet‐ and dry‐season burning for weed management in tropical savannas of northern Australia. Within 12 months of fire, abundances of the skink Carlia munda (Scincidae) were higher in the burned sites, but overall reptile composition was structured by habitat type rather than by effects of burning. Within 3 years of a fire, the effects of fire were evident. Reptiles, especially the gecko Heteronotia binoei (Gekkonidae), were least abundant in dry‐season burned sites; litter‐associated species, including Carlia pectoralis (Scincidae), were rarely observed in burned habitat; and there were fewer species in the wet‐season burned sites. Reptile abundance was associated with vegetation structure, which suggests that fire‐induced changes detrimentally altered the availability of resources for some reptiles, particularly leaf‐litter species. Invasive alien plants, such as rubber vine, have severe effects on native biodiversity, and control of such species is a fundamental land management objective. Nevertheless, fire management of invasive alien plants may adversely affect native biodiversity, creating a conservation conundrum. In such scenarios, land managers will need to identify the most desired conservation goal and consider the consequences for native biota.  相似文献   

10.
Pettit NE  Naiman RJ 《Ecology》2007,88(8):2094-2104
Piles of large wood (LW) deposited by major floods in river corridors can interact with naturally occurring wildfires from uplands to impact the regeneration of riparian vegetation. This study examines the spatial and short-term temporal response of riparian vegetation and soil nutrients to fire along the Sabie River, South Africa, with special emphasis on the effects of burned LW piles. At the study site there were 112 species of plants recorded with 28% of species restricted to the burned plots. As expected, vegetation cover was significantly lower in burned plots as compared with the unburned plots 12 months postfire. There was a significant influence of LW on species richness with fewer species recorded in the LW plots. For both fire and LW treatments, plant cover showed a significant change over three years. After an initial increase from 12 to 24 months (postfire) there was a decline in plant cover after 36 months. Species community composition was distinctly different between burned and unburned plots 12 months postfire, and the presence of LW affected species composition for burned plots but not for unburned ones. Time series ordination of LW plots highlighted the changes in species composition over the three years of sampling. Of trees with accumulations of LW within 5 m of their base, 48% had been killed by fire as compared to only 4% with no LW accumulations in close proximity. Soil-available P was significantly higher in the burned plots and even higher with burned LW while there were no effects on soil total N. There was also a significant positive trend between available P in soils and plant vegetation cover. Soil-exchangeable K was also significantly higher and total C significantly lower in the burned and LW plots. Burned plots also had significantly higher soil electrical conductivity (EC) and soil pH. The patchy nature of the studied fire, whose complexity is exacerbated by the distribution of flood deposited LW, acted to create a mosaic of alternate successional states as the riparian community recovers from flooding and the subsequent fire. We suspect that the resultant heterogeneity will increase ecosystem resilience by providing flexibility in the form of more options for a system response to subsequent disturbances.  相似文献   

11.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   

12.
本文从群体水平上研究了蒙古栎林生态系统中的水分循环与养分循环的关系。结果表明,降雨是系统养分的重要输入。降雨对林冠的淋洗淋溶作用有助于养分的归还及缩短养分循环的途径。蒙古栎树干茎流量大,且其中含有的养分元素较多,从而使蒙古栎的根系能获得更多的水分与养分,有助于适应干旱、瘠薄的立地环境。径流是系统的水分输出,也是养分输出。蒙古栎林的下渗流约占整个径流的90%,且养分元素含量较低,从而有助于养分的积累。降雨在蒙古栎林内的分配格局不一,导致系统养分积累的明显差异。本文还探讨了干扰对养分循环与水分循环的影响。结果表明,采伐森林导致水分分配的变化,也使系统的养分发生亏损。只有把养分循环与水分循环结合起来,才能较完整地评价森林的生态功能。  相似文献   

13.
Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.  相似文献   

14.
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.  相似文献   

15.
Algorithms relating remotely sensed woody cover to biomass are often the basis for large-scale inventories of aboveground carbon stocks. However, these algorithms are commonly applied in a generic fashion without consideration of disturbances that might alter vegetation structure. We compared field and remote sensing estimates of woody biomass on savannas with contrasting disturbance (fire) histories and assessed potential errors in estimating woody biomass from cover without considering fire history. Field surveys quantified multilayer cover (MLC) of woody and succulent plants on sites experiencing wildfire in 1989 or 1994 and on nearby unburned (control) sites. Remote sensing estimates of the woody cover fraction (WCF) on burned and control sites were derived from contemporary (2005) dry-season Landsat Thematic Mapper imagery (during a period when herbaceous cover was senescent) using a probabilistic spectral mixture analysis model. Satellite WCF estimates were compared to field MLC assessments and related to aboveground biomass using allometry. Field-based MLC and remotely sensed WCFs both indicated that woody cover was comparable on control areas and areas burned 11-16 years ago. However, biomass was approximately twofold higher on control sites. Canopy cover was a strong predictor of woody biomass on burned and control areas, but fire history significantly altered the linear cover-biomass relationship on control plots to a curvilinear relationship on burned plots. Results suggest predictions of woody biomass from "generic" two-dimensional (2-D) cover algorithms may underestimate biomass in undisturbed stands and overestimate biomass in stands recovering from disturbance. Improving the accuracy of woody-biomass estimates from field and/or remotely sensed cover may therefore require disturbance-specific models or detection of vegetation height and transforming 2-D vegetation cover to 3-D vegetation volume.  相似文献   

16.
Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown. Because cicadas are consumed by a variety of animal species, disturbances that alter timing of their emergence or abundance could have consequences for species at higher trophic levels. We trapped emerging cicadas (Tibicen dealbatus) in burned and unburned riparian forest plots along the Middle Rio Grande in central New Mexico (USA) to determine effects of wildfire and vegetation structure on their density and phenology. We measured vegetation variables and soil temperature at cicada traps and related these variables to variation in emergence density and phenology. We also experimentally heated soil under emergence traps to examine the relationship between soil temperature and emergence phenology. Emergence density was similar in wildfire and unburned plots, though emergence date averaged earlier in wildfire plots and experimentally heated traps. We identified models containing cottonwood proximity (distance from the nearest cottonwood tree) and cottonwood canopy coverage as the most parsimonious explanations of emergence density at each trap. Model selection results were consistent with the literature and field observations that showed that cottonwood trees are an essential resource for T. dealbatus. Cottonwood canopy was also correlated with low soil temperatures, which are associated with later emergence dates. Failure of cottonwoods to reestablish following wildfire could result in cicadas emerging at lower densities and at earlier dates. For cicadas to emerge at densities and times that provide the greatest benefits to birds and other riparian-obligate secondary consumers, riparian forests should be protected from fire, and native vegetation in wildfire sites should be restored.  相似文献   

17.
Lignin and its effects on litter decomposition in forest ecosystems   总被引:1,自引:0,他引:1  
Lignin is a major component of plant litter. In this review, we found lignin comprises a complex class of organic compounds whose concentration differs greatly both between and within plant species. There are many analytical methods for detecting the composition and structure of lignins. As lignins are enormously complex compounds, chemical assay is difficult and different methods vary with the results. Lignin plays a significant role in the carbon cycle, sequestering atmospheric carbon into the living tissues of woody perennial vegetation. It has also great effects on nitrogen dynamics of forest ecosystems as well as other ecological processes. Lignin is one of the most slowly decomposing components of dead vegetation, contributing a major fraction of the material that becomes humus as it decomposes. Lignin is highly correlated with decomposition of litter. Thus, there is evidence that the lignin concentration is a more influential factor than the other chemical concentrations, in determining the rate of leaf litter decomposition of different forest ecosystems. Although a great number of researchers have addressed lignin's role in litter decomposition, still there are many aspects of lignin biogeochemistry that are not known. This lack of information hinders complete amalgam of lignin effects on litter decomposition processes and dynamics of nutrient cycling.  相似文献   

18.
Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the restoration of forest floor characteristics rather than the introduction of high-intensity fires used to regulate midstory structure.  相似文献   

19.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   

20.
Litter decomposition is a key component in ecosystem material cycling that determines (i) forest soil carbon (C) and nutrient content, (ii) release of carbon dioxide to the atmosphere, and (iii) generation and mass transfer of dissolved organic carbon from terrestrial to aquatic ecosystems. In this study, we provide simulations of long term forest-floor litter dynamics generated with both (i) an existing forest nutrient cycling and biomass growth model (ForNBM) with a single-pool formulation of forest-floor litter decomposition (Zhu et al., 2003. Ecol. Model. 169, 347-360), and (ii) a revised version of the model produced by substituting the single-pool formulation with a three-pool version of the formulation tested against data from litterbag experiments (FLDM; Zhang et al., 2010. Ecol. Model. 221, 1944-1953). This is done to determine the importance of subdividing the litter mass into categories of rates of decay (i.e., fast, slow, and very slow) on model accuracy. Forest-forest litter dynamics simulated with the two models are subsequently compared against field measurements collected at several northern jack pine (Pinus banksiana) stands along a southwest-northeast oriented transect (climate gradient) associated with the Boreal Forest Transect Case Study in northwest Canada. Initial comparison shows that the single-pool formulation underpredicts residual litter mass when forests are <65 years old, largely due to the improper treatment of the very slow decomposing litter component. This underprediction is resolved when the three-pool formulation is used. From a ecosystems-response point of view, the revised ForNBM (with the three-pool formulation) demonstrates that (i) forest-floor litter initially increases with forest growth and reaches a plateau once the forest matures; (ii) the forest floor stores more litter and C at the southern and warmer sites than at the northern sites; and (iii) in a similar climate regime, the forest floor stores more litter and C at productive than at nutrient-poor sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号