首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Arsenic oxyanions, considered as priority pollutants, were removed from dilute aqueous solutions by sorption onto synthetic goethite, a typical inorganic adsorbent. Flotation was subsequently applied as an effective solid/liquid separation method. The combined process produced a foam concentrate, containing the arsenic-loaded goethite particles. The dispersed-air flotation technique was used for the generation of fine gas bubbles. The main parameters affecting the process were studied and promising results, in terms of arsenic removal and of goethite separation, were obtained.  相似文献   

2.
Lazaridis NK  Matis KA  Webb M 《Chemosphere》2001,42(4):373-378
Synthetic hydrotalcite-like layered materials are known for their ability to remove anions, like the chromates. These sorbents usually exist in powder form, thereby exhibiting high surface area and rapid kinetics for adsorption, but presenting appreciable problems in the subsequent solid/liquid separation process. Almost complete removals were obtained in this paper, from batchwork dispersed-air flotation in presence of a flocculant. Due to the experienced difficulty of flotation of thermally activated (at 500 degrees C) hydrotalcite metal-loaded particles, the application of various surfactants was studied. Continuous-flow laboratory runs certified also the effectiveness of this combined process of sorptive flotation, a promising innovative treatment technology.  相似文献   

3.
Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO–Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to “structural memory effect” is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3 ?, SO4 2?, and F?, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0 % could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.  相似文献   

4.
The sorption of Cu(II) from an aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. Sorption was investigated as a function of pH, ionic strength, foreign ions, humic substances, and temperature. The results indicate that the sorption of Cu(II) on ZSM-5 zeolite is strongly dependent on pH. Sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of humic/fluvic acid (HA/FA) enhances the sorption of Cu(II) on ZSM-5 zeolite at low pH values, and reduces Cu(II) sorption at high pH values. Sorption isotherms were well simulated by the Langmuir model. Thermodynamic parameters (i.e., deltaH0, deltaS0 and deltaG0) for the sorption of Cu(II) were determined from temperature-dependent sorption isotherms at 293.15, 313.15, and 333.15 K, respectively. Results indicate that the sorption process of Cu(II) on ZSM-5 zeolite is spontaneous and endothermic.  相似文献   

5.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

6.
In this study, the effects of size of adsorbent, temperature, pH of solution, ionic strength, presence of inorganic substances such as calcium ion, magnesium ions, chloride ions, fertilizers and presence of organic substances such as dissolved organic matter, surfactant, other herbicides on sorption of 2,4-D and atrazine onto rubber granules were investigated. The removal efficiency was more for fine adsorbent particles. Temperature played an important role in sorption process. Temperature effect was endothermic for 2,4-D and exothermic for atrazine, respectively. The removals were maximum at pH 4 for 2,4-D and at pH 6 for atrazine. The presence of other herbicide (butachlor) reduced sorption capacity of rubber granules by approximately 10% for both 2,4-D and atrazine. All other factors had insignificant effect on sorption capacity. The mathematical expressions were developed for predicting the overall percentage removal of 2,4-D and atrazine on the basis of major four controlling factors viz. adsorbent size, temperature, pH and presence of other herbicide.  相似文献   

7.
Qian Y  Posch T  Schmidt TC 《Chemosphere》2011,82(6):859-865
Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal’s forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.  相似文献   

8.
Li J  Zhou B  Shao J  Yang Q  Liu Y  Cai W 《Chemosphere》2007,68(7):1298-1303
The effects of different heavy metals (Cd, Pb), cationic surfactants cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecylbenzenesulfonate (SDBS) and the chemistry of the solution (pH and ionic strength) on the sorption of bisphenol A (BPA) to sediment were studied. Results showed that the presence of Cd and Pb caused a significant increase on the sorption of BPA to sediment and the sorption isotherms were in good agreement with Freundlich equation. The effect of surfactants on the adsorption of BPA onto sediment was found to strongly depend on the type of the surfactants. The presence of CTAB promoted BPA sorption and the amount of BPA adsorbed onto sediment increased linearly with concentration of CTAB. In contrast, the presence of anionic surfactant (SDBS) caused a slight reduction on the sorption of BPA. It was also found that the sorption behavior of BPA was affected by solution pH and ionic strength. The larger amount of BPA was absorbed with higher ionic strength and lower pH. This study may provide important insights into the understanding of the transport and fate of BPA in the environment.  相似文献   

9.
Knowledge of the factors that influence the fate and transport of viruses in porous media is very important for accurately determining groundwater vulnerability and for developing protective regulations. In this study, six saturated sand column experiments were performed to examine the effects of a positively charged Al-oxide, which was coated on sand particles, on the retention and transport of viruses (phiX174 and MS-2) in background solutions of different ionic strength and composition. We found that the Al-oxide coating on sand significantly removed viruses during their transport in a phosphate buffered saline (PBS) solution. Mass balance calculations showed that 34% of the input MS-2 was inactivated/irreversibly sorbed on the surface of Al-oxide coated sand whereas 100% of phiX174 was recovered. Results from this study also indicated that higher ionic strength facilitated the transport of both phiX174 and MS-2 through the Al-oxide coated sand. This was attributed to the effect of ion shielding, which at higher ionic strength decreased the electrostatic attraction between the viral particles and the sand surface and consequently decreased virus sorption. Strong effect of the ionic strength indicates that an outer-sphere complexation mechanism was responsible for the virus sorption on the Al-oxide coated sand. Ion composition of the background solutions was also found to be a significant factor in influencing virus retention and transport. Virus transport was enhanced in the presence of phosphate (HPO(4)(2-)) as compared to bicarbonate (HCO(3)(-)), and the effect of HPO(4)(2-) was more significant on MS-2 than on phiX174. The presence of bivalent cations (Ca(2+) and Mg(2+)) increased virus transport because the cations partially screened the negative charges on the viruses therefore decreased the electrostatic attraction between the positively charged sand surface and the negatively charged viruses. Mass recovery data indicated that bivalent cations gave rise to a certain degree of inactivation/irreversibly sorption of phiX174 on the surface of Al-oxide coated sand. On the contrary, the bivalent cations appeared to have protected MS-2 from inactivation/irreversibly sorption. This study provides some insights into the mechanisms responsible for virus retention and transport in porous media.  相似文献   

10.
A new hybrid process for cleaning wastewater, combining flotation and membrane microfiltration, was investigated. The hybrid process combined the advantages of both flotation and membrane separation: the flotation cell removed a large proportion of suspended solid particles, while the membrane module produced clean water permeate effluent. The hybrid cell performance has been studied in depth and reviewed in the current paper. The proof of concept for the hybrid solid/liquid separation process was investigated using an aqueous suspension of fine and ultra fine particles (synthetic adsorbents, ion exchangers). The feasibility of this combined process was investigated in the recovery of metal cations (copper) from a Bulgarian copper mine effluent.  相似文献   

11.
As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) received more and more attention. In order to assess its environmental fate and ecological effects accurately, it is necessary to understand the sorption properties of TYL on the soils/sediments. The sorption of TYL on goethite at different pH and ionic strength conditions were measured through a series of batch experiments and the sorption data of TYL were fitted by Freundlich and dual-mode sorption models. It was obvious that sorption was strongly dependent on pH and ionic strength. Sorption capacity of TYL increased as the pH increased and ionic strength decreased. The pH and ionic strength-dependent trends might be related with complexation between cationic/neutral TYL species and goethite. The sorption affinity of TYL on goethite decreased as ionic strength increased, which only occurred at higher TYL concentrations, suggested that inner complex might have dominated process at low concentrations and outer complex might occur at higher concentrations of TYL. Spectroscopic evidence indicated that tricarbonylamide and hydroxyl functional groups of TYL might be accounted for the sorption on mineral surfaces. The experimental data of TYL sorption could be fitted by surface complexation model (FITEQL), indicating that ≡FeOH with TYL interaction could be reasonably represented as a complex formation of a monoacid with discrete sites on goethite. The sorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bounding on goethite. It should be noticed that the heterogeneous of sorption affinity of TYL on goethite at various environment to assess its environment risk.  相似文献   

12.
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments.  相似文献   

13.
Batch sorption experiments were carried out for the removal of cationic dyes (methylene blue and malachite green) from their aqueous solutions using sorbent made from fly ash-a waste material. Effects of various experimental parameters: initial dye concentration, contact time, pH, adsorbent dosage, solution temperature, surfactant addition and ionic strength on the fly ash sorption of dyes were evaluated. The isothermal data for sorption followed the Langmuir model. The maximum sorption capacity obtained for methylene blue and malachite green was 36.05 mg/g and 40.65 mg/g, respectively. Kinetic studies indicate that sorption on fly ash follows the pseudo-second order kinetics. Present research suggests that fly ash could be an appropriate adsorbent for the removal of basic dyes from aqueous solutions.  相似文献   

14.
Sorption of As(V) ions by akaganéite-type nanocrystals   总被引:3,自引:0,他引:3  
A priority pollution problem, the removal of arsenate oxyanions from dilute aqueous solutions by sorption onto synthetic akaganéite (beta-FeO(OH)) was the aim of the present study. This is an innovative inorganic adsorbent material prepared in the laboratory, following a new method of preparation. The effect of akaganéite and arsenate concentration, the contact time, temperature, solution pH value, and ionic strength variation on the treatment process was mainly investigated during this study. Typical adsorption isotherms were determined, which were found to fit sufficiently the typical Langmuir equation. The mechanism of sorption was examined by electrokinetic, X-ray diffraction, Fourier transmission infrared and scanning electron microscopy measurements. Promising results were obtained, due to the favourite characteristics of the adsorbent applied.  相似文献   

15.
The fate of the acidic organic solute from the soil-water-solvent system is not well-understood. In this study, the effect of the acidic functional group of organic solute in the sorption from cosolvent system was evaluated. The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) by three kaolinitic soils and two model sorbents (kaolinite and humic acid) were measured as functions of the methanol volume fractions (f (c) ≤ 0.4) and ionic compositions (CaCl(2) and KCl). The solubility of 1-NAPA was also measured in various ionic compositions. The sorption data were interpreted using the cosolvency-induced sorption model. The K (m) values (= the linear sorption coefficient) of NAP with kaolinitic soil for both ionic compositions was log linearly decreased with f (c). However, the K (m) values of 1-NAPA with both ionic compositions remained relatively constant over the f (c) range. For the model sorbent, the K (m) values of 1-NAPA with kaolinite for the KCl system and with humic acid for both ionic compositions decreased with f (c), while the sorption of 1-NAPA with kaolinite for the CaCl(2) system was increased with f (c). From the solubility data of 1-NAPA with f (c), no significant difference was observed with the different ionic compositions, indicating an insignificant change in the aqueous activity of the liquid phase. In conclusion, the enhanced 1-NAPA sorption, greater than that predicted from the cosolvency-induced model, was due to an untraceable interaction between the carboxylate and hydrophilic soil domain in the methanol-water system. Therefore, in order to accurately predict the environmental fate of acidic pesticides and organic solutes, an effort to quantitatively incorporate the enhanced hydrophilic sorption into the current cosolvency-induced sorption model is required.  相似文献   

16.
Haron MJ  Wan Yunus WM  Yong NL  Tokunaga S 《Chemosphere》1999,39(14):2459-2466
Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.  相似文献   

17.
Sorption of lead in soil as a function of pH: a study case in México   总被引:3,自引:0,他引:3  
Reactions of lead sorption onto soil are largely affected by properties and composition of soil and its solution. In this study, the lead sorption onto regosol eutric soil from Francisco I. Madero, Zacatecas, Mexico is evaluated at different pH values. Soil samples were suspended in lead solutions of 10, 25, 50, 100, 150, 200, 300, and 400 mg/l (as Pb(NO3)2). The pH was adjusted at 2, 3, 4, and 5.5 with nitric acid for each of the lead solution concentrations. In all the cases the ionic strength was I=0.09 M with calcium nitrate. The solid-liquid-ratios were fixed in 1:100 and 1:200 g/ml. The results show that lead sorption increases when pH increases. Experimental isotherms were adjusted by both Langmuir and Freundlich models. The Langmuir affinity parameter, K, indicates that the lead sorption capacity of Francisco I. Madero soils is largely perceptible to pH changes.  相似文献   

18.
The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR–ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR–ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg?g?1. The sorption of RR 120 on ED was mainly physical and exothermic according to results of DR isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.  相似文献   

19.
Qin Zhou  Gang Pan  Jun Zhang 《Chemosphere》2013,90(9):2461-2466
The hexadecyltrimethylammonium bromide (HDTMAB) immobilized hollow mesoporous silica spheres were prepared for the efficient removal of perfluorooctane sulfonate (PFOS) from aqueous solution. Besides the traditional sorption behavior including sorption kinetics as well as effect of solution pH and temperature, the effect of increasing volume which simulated the natural river where the rate of solute and solvent was relatively constant and solution volume was always changing was investigated. The result indicated that the residual PFOS concentrations in aqueous phase decreased with increasing solution pH and ionic strength, whereas they increased with increasing temperature. The HDTMAB immobilized material still maintained high efficiency after increasing volume, that is, the removal kept more than 99% after the treatment when the initial PFOS concentration was 1 mg L?1. The uptake behavior and morphology of spheres which was characterized by transmission electron microscopy (TEM) revealed that the additional HDTMAB and mesoporous shell were responsible for the enhanced sorption of PFOS. It was concluded that electrostatic interaction and Ca-bridge role played an important role in the sorption of PFOS on the mesoporous SiO2 hollow spheres, whereas, hydrophobic interaction contributed to the nice sorption performance of PFOS on the HDTMAB immobilized sorbent.  相似文献   

20.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号