首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.  相似文献   

2.
Nanocomposite hydrogels based on poly(methacrylamide-co-acrylic acid) and nano-sized montmorillonite were prepared by aqueous dispersion and in situ radical polymerization. Optimum sorption conditions were determined as a function of montmorillonite content, contact time, pH, and temperature. The equilibrium data of Cu2+ and Ni2+ conformed to the Freundlich and Langmuir isotherms in terms of relatively high regression values. The maximum monolayer adsorption capacity of the nanocomposite hydrogel (with 3 wt% montmorillonite content), as obtained from the Langmuir adsorption isotherm, was found to be 49.26 and 46.94 mg g?1 for Cu2+ and Ni2+, respectively, at contact time?=?60 min, pH?=?6.8, adsorbent dose?=?100 mg/ml, and temperature?=?318 K. Kinetic studies of single system indicated that the pseudo-second order is the best fit with a high correlation coefficient (R 2?=?0.97–0.99). The result of five times sequential adsorption–desorption cycle shows a good degree of desorption and a high adsorption efficiency.  相似文献   

3.
The important criteria in anaerobic digestion is the rate-limiting step which decides the fate of value-added products especially from waste-activated sludge (WAS). Hence, the present study investigated the effect of magnesium (Mg2+) addition on anaerobic digestion of WAS. The lab-scale experiments were conducted at 25 °C with Mg2+ doses ranging from 0.01 to 0.2 mol/L. Maximum total volatile fatty acids (VFAs) production (372.78 mg COD/L) occurred at a Mg2+ dose of 0.2 mol/L, which was about eight times higher than the control tests. Further, Mg2+ addition facilitated sludge dewaterability and phosphorus removal. The mechanism of improved VFAs generation was analyzed from the view of both chemical and biological effects. Chemical effect significantly enhanced the release of calcium and iron in WAS, resulting in the disintegration of WAS, which benefited hydrolysis and acidification processes. Illumina MiSeq sequencing analysis revealed that enrichment of functional bacteria and the increase of bacterial diversity were obtained in the 0.2 mol Mg2+/L experiment, while the influence was negative on the reactor with 0.025 mol/L Mg2+. Meanwhile, methanogens were accordantly inhibited in the experiments with Mg2+ addition.  相似文献   

4.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

5.
This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA))?=?1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb2+, Cd2+, Cu2+, and Fe3+ achieved adsorption equilibriums within 24 h, whereas Cr3+ reached equilibrium in 5 h. Pb2+, Cd2+, Cr3+, and Fe3+ maximum load capacity was 1,000 mg L?1, whereas the Cu2+ maximum capacity was 500 mg L?1. The priority order in the multicomponent adsorption was Cr3+>Fe3+>Cu2+>Cd2+>Pb2+. The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.  相似文献   

6.
Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu2+ and Zn2+ from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu2+ and Zn2+ from a aqueous solution containing a 100 mg/l of Cu2+ and Zn2+, where 92.9 % Cu2+ and 58.3 % Zn2+ were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu2+ and Zn2+. A kinetics study indicated that removing Cu2+ and Zn2+ with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu2+and Zn2+ on bentonite and the degradation of Cu2+and Zn2+ by nZVI on the bentonite. However, Cu2+ removal by B-nZVI was reduced rather than adsorption, while Zn2+ removal was main adsorption. Finally, Cu2+, Zn2+, Ni2+, Pb2+ and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.  相似文献   

7.
The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid–liquid adsorption. The composition of SDS SMES was optimized by Box–Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid–liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid–liquid adsorption.  相似文献   

8.
The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are ?10.48?×?103 and ?6.098?×?103 kJ mol?1 over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k ad for dye systems were calculated at different temperatures (303–323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model.  相似文献   

9.
The removal and mechanism of Cu2+ and Cd2+ from aqueous single-metal solutions were investigated by using a novel biosorbent from waste-activated sludge. A series of adsorption experiments was designed to disclose the effects of the key factors on the adsorption capacity of the biosorbent for the metal ions. The mass ratio of the biosorbent to metal ion was optimized as 2 to balance the adsorption capacity and the removal efficiency. A right shaking speed (150 r/min) not only ensured enough contact frequency between the sorbent and the adsorbate but also reduced the mass transfer resistance. The natural pH value (about 5.5) of the metal solutions benefited a high adsorption capacity of the biosorbent and avoided the consumption of acid or base for pH adjustment. The adsorption reactions belonged to the endothermic process between 15 and 45 °C. As the scanning electron microscopy (SEM) images showed, the meshy structure with long chains and many branches was ideal for the biosorbent to quickly capture the metal ions. The energy-dispersive X-ray (EDX) spectra confirmed that the adsorbed metal ions lay in the precipitates of the adsorption reactions. According to the FTIR analyses, the functional groups responsible for Cu2+ adsorption majorly consisted of O–H, N–H, COOH, CONH2, and the groups containing sulfur and phosphorus, while those for Cd2+ adsorption contained O–H, N–H, COOH, and CONH2. The differences in the responsible functional groups explained the phenomenon that the adsorption capacity of the biosorbent for Cu2+ was higher than that for Cd2+.  相似文献   

10.
Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn2+, Li+, Cu2+ and Co2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li+, Cu2+, and Co2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn2+, Li+, Cu2+, and Co2+. The fungi growth inhibition decreased as zeolite-Cu2+>zeolite-Li+>zeolite-Co2+>zeolite-Zn2+. In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li+ were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL?1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li+, which showed to be a promising agent against F. graminearum and its toxin.  相似文献   

11.
The present study explores the tolerance and metal removal response of a well-developed 2-week-old Phormidium mat after long-term exposure to Cu2+-enriched medium. Cu2+ enrichment inhibited increase in mat biomass in a concentration-dependent manner. Mat area and the number of entrapped air bubbles decreased as Cu2+ concentration increased in the medium. Decrease in number of air bubbles obviously reflects the adverse effect of Cu2+ on photosynthetic performance of the mat. Metal enrichment did not substantially alter the amount of pigments, such as chlorophyll a, chlorophyll b, carotenoids, and phycocyanin, in the mat. Enhancement of Cu2+ concentration in the medium led to changes in species composition of the test mat; however, Phormidium bigranulatum always remained the dominant organism. Relative share of green algae and some cyanobacterial taxa, namely, Lyngbya sp. and Oscillatoria tenuis, in the mat were increased by Cu2+ enrichment. The mat successfully removed 80 to 94 % Cu2+ from the growth medium containing 10 to 100 μM Cu2+. Extracellular polysaccharides, whose share increased in the mat community after metal addition, seem to have contributed substantially to metal binding by the mat biomass.  相似文献   

12.
以柠檬酸对荞麦壳进行化学改性,改性后荞麦壳吸附剂对Cu2+的吸附量增加。研究了不同pH、吸附剂投入量、浓度和时间对吸附效果的影响。在pH值为5.5,Cu2+初始浓度50 mg/L,吸附剂投入量为1 g,吸附时间为120 min的条件下,Cu2+的吸附量达到较大值。通过用改性荞麦壳吸附剂对Cu2+的热力学吸附过程的分析,结果表明,改性荞麦壳吸附剂符合Langmuir吸附等温模式,改性荞麦壳吸附剂对Cu2+的吸附存在化学吸附,改性荞麦壳的最大吸附量可以达2.26 mg/g。研究改性荞麦壳吸附剂吸附Cu2+的动力学特性,吸附动力学行为可用准二级速率方程进行很好的描述,准二级吸附速率常数随温度升高而增大。准一级速率方程和颗粒扩散模型可以较好地描述吸附初始阶段,Cu2+浓度较高,颗粒内扩散;吸附后期,Cu2+浓度较低,受到颗粒外扩散的控制。总之,整个吸附过程可能是多种动力学机理共同作用的结果。  相似文献   

13.
The utilization of sustainable and biodegradable lignocellulosic fiber to detoxify the noxious Cr(VI) from wastewater is considered a versatile approach to clean up a contaminated aquatic environment. The aim of the present research is to assess the proficiency and mechanism of biosorption on Ficus carica bast fiber via isotherm models (Langmuir, Freundlich, Temkin, Harkin’s–Jura, and Dubinin–Radushkevich), kinetic models, and thermodynamic parameters. The biomass extracted from fig plant was characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and contact time were studied by batch method. The equilibrium data were best represented by the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) onto biosorbent was found to be 19.68 mg/g. The pseudo-second-order kinetic model adequately described the kinetic data. The calculated values of thermodynamic parameters such as enthalpy change (?H 0), entropy change (?S 0), and free energy change (?G 0) were 21.55 kJ/mol, 76.24 J/mol?K, and ?1.55 kJ/mol, respectively, at 30 °C which accounted for spontaneous and endothermic processes. The study of adsorbent capacity for Cr(VI) removal in the presence of Na+, Mg2+, Ca2+, SO 4 2? , HCO 3 ? and Cl? illustrated that the removal of Cr(VI) increased in the presence of HCO3? ions; the presence of Na+, SO 4 2? or Cl? showed no significant influence on Cr(VI) adsorption, while Ca2+ and Mg2+ ions led to an insignificant decrease in Cr(VI) adsorption. Further, the desorption studies illustrated that 31.10 % of metal ions can be removed from an aqueous system, out of which 26.63 % of metal ions can be recovered by desorption in first cycle and the adsorbent can be reused. The results of the scale-up study show that the ecofriendly detoxification of Cr(VI) from aqueous systems was technologically feasible.  相似文献   

14.
以煤矸石为原料,采用碱熔后水热合成法制备X型分子筛并进行XRD、SEM、BET和Zeta电位分析。研究其对水中Co2+、Cu2+、Cd2+和Cr3+4种离子的吸附性能,包括吸附等温线、吸附动力学以及初始金属离子浓度、pH值对吸附性能的影响。所合成的矸石基X型分子筛的BET比表面积为676.02 m2/g,微孔孔容为0.263 cm3/g。吸附实验表明,矸石基X型分子筛能有效去除上述4种离子,同时实现煤矸石的资源化和金属离子的去除。4种离子的平衡吸附量均随初始浓度的增大而增大,相同条件下平衡吸附量的大小顺序为Cd2+>Cr3+>Cu2+>Co2+。准二级动力学模型能很好地描述4种离子的吸附动力行为。Langmuir模型对Co2+、Cu2+和Cd2+吸附的拟合较Freundlich模型高,说明其主要表现为物理吸附过程。4种离子的吸附速率均由液膜扩散和颗粒内扩散共同控制。  相似文献   

15.
Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k 2?=?2.04?×?10?2?g?min?1?μg?1) and greater adsorption capacity (q e?=?38.8 μg?g?1) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg2+ which significantly reduced adsorption distribution coefficient (K d) from 12,990?±?260 to 4,690?±?180 L?kg?1. Species-specific adsorption distribution coefficients followed the order of $ K_{\mathrm{d}}^{{ + 00}} \gg K_{\mathrm{d}}^{{ + - 0}} > K_{\mathrm{d}}^{{ + - - }} $ . Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 °C) followed the Freundlich adsorption isotherm well.  相似文献   

16.
In this study, uranium(VI) was successfully removed from aqueous solutions using heat-treated carbon microspheres based on a batch adsorption technique. Influence of the parameters, such as solution pH, contact time, initial uranium(VI) concentration, and temperature on the removal efficiency have been investigated in detail. The results reveal that the maximum adsorption capacity of the heat-treated carbon microspheres toward uranium(VI) is 92.08 mg g?1, displaying a high efficiency for the removal of uranium(VI) from aqueous solution. The experimental data are analyzed using sorption kinetic models. It is revealed that the process obey the pseudo-second-order kinetic model, the determining step might be chemical sorption. The thermodynamic parameters, such as ΔH°, ΔS°, and ΔG° show that the process is endothermic and spontaneous. This work provides an efficient, fast, and convenient approach for the removal of uranium(VI) from aqueous solutions.  相似文献   

17.
Ammonia nitrogen pollution control is an urgent issue of landfill. This research aims to select an optimal refuse for ammonia nitrogen removal in landfill from the point of view of adsorption and desorption behavior. MSW (municipal solid waste) samples which deposit ages were in the range of 5 to 15 years (named as R15, R11, R7, and R5) were collected from real landfill site. The ammonia nitrogen adsorption behaviors of MSW including equilibrium time, adsorption isotherms, and desorption behaviors including equilibrium time were determined. Furthermore, the effects of pH, OM, Cu(II), Zn(II), and Pb(II) on adsorption and desorption behavior of ammonia nitrogen were conducted by orthogonal experiment. The equilibrium time of ammonia nitrogen adsorption by each tested MSW was very short, i.e., 20 min, whereas desorption process needed 24 h and the ammonia nitrogen released from refuses was much lesser than that adsorbed, i.e., accounted for 3.20 % (R15), 14.32 % (R11), 20.59 % (R7), and 20.50 % (R5) of each adsorption quantity, respectively. The maximum adsorption capacity estimated from Langmuir isotherm appeared in R15-KCl, i.e., 25,000 mg kg?1. The best condition for ammonia nitrogen removal from leachate was pH >7.5, OM 23.58 %, Cu(II) <5 mg L?1, Zn(II) <10 mg L?1, and Pb(II) <1 mg L?1. Ammonia nitrogen in landfill leachate could be quickly and largely absorbed by MSW but slowly and infrequently released. The refuse deposited for 15 years could be a suitable material for ammonia nitrogen removal.  相似文献   

18.
Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.  相似文献   

19.
Dissolved organic matter (DOM) affects arsenite [As(III)] toxicity by altering its sorption equilibrium at the cell wall interface. A better understanding of such mechanism is of great importance to assess As(III) ecotoxicity in aquatic systems. Batch experiments were conducted to study the effects of DOM on the regulation of As(III) sorption and toxicity in the diatom Navicula sp. The influence of humic acid (HA) on As(III) toxicity was assessed by measuring algal growth, chlorophyll a, and reactive oxygen species (ROS), whereas As(III) mobility across the cell wall was estimated by determining the concentration of intracellular, cell-wall-bound, and free As(III) ions in cell media. Results showed that the effects of HA on arsenite toxicity varied depending on various combinations of As(III)-HA concentrations. EC50 had an approximate threefold increase from 8.32 (HA-free control) to 22.39 μM (at 20 mg L?1 HA) when Navicula sp. was exposed to 1.0–100.0 μM of As(III), compared to an overall low complexation ratio of HA-As(III) in a range of 0.91–6.00 %. The cell wall-bound and intracellular arsenic content decreased by 19.8 and 20.3 %, respectively, despite the lower arsenite complexation (2.10?±?0.16 % of the total As). Meanwhile, intracellular ROS was decreased by 12.6 % in response to 10.0 μM As(III) and 10 mg L?1 HA vs. the HA-free control. The significant contrast indicated that complexation alone could not explain the HA-induced reduction in arsenite toxicity and other factors including HA–cell surface interactions may come into play. Isotherms describing adsorption of HA to the Navicula sp. cells combined with morphological data by scanning electron microscopy revealed a protective HA floccule coating on the cell walls. Additional Fourier transform infrared spectroscopic data suggested the involvement of carboxylic groups during the adsorption of both HA and As(III) on the Navicula sp. cell surface. Collective data from this study suggest that cell wall-bound HA can moderate As(III) toxicity through the formation of a protective floccule coating occupying As(III) sorption sites and decreased effective functional groups capable of binding As(III). Our findings imply that As(III) toxicity can be alleviated due to the increased hindrance to cellular internalization of As(III) in the presence of naturally abundant DOM in water.  相似文献   

20.
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12–0.21 %?w/v) and yeast extract (0.12–0.3 %?w/v) and relatively high wheat bran (~5–6 %?w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B 2 showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号