首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

2.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

3.
In an effort to assess the potential contamination and determine the environmental risks associated with heavy metals, the surface sediments in Liaodong Bay, northeast China, were systematically sampled and analyzed for the concentrations of Cu, Pb, Zn, Cr, Ni, As, and Hg. The metal enrichment factor (EF) and geoaccumulation index (I geo) were calculated to assess the anthropogenic contamination in the region. Results showed that heavy metal concentrations in the sediments generally met the criteria of China Marine Sediment Quality (GB18668-2002); however, both EF and I geo values suggested the elevation of Pb concentration in the region. Based on the effect-range classification (TEL-PEL SQGs), Cu, Pb, Ni, and As were likely to pose environment risks, and the toxic units decreased in the order: Ni?>?Pb?>?Cr?>?Zn?>?As?>?Cu?>?Hg. The spatial distribution of ecotoxicological index (mean-ERM-quotient) suggested that most of the surface sediments were “low–medium” priority zone. Multivariate analysis indicated that the sources of Cr, Ni, Zn, Cu, and Hg resulted primarily from parent rocks, and Pb or As were mainly attributed to anthropogenic sources. The results of this study would provide a useful aid for sustainable marine management in the region.  相似文献   

4.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

5.
An investigation is reported of the degree of metal pollution in the sediments of Kafrain Dam and the origin of these metals. Fourteen sampling sites located at Kafrain Dam were chosen for collecting the surface, cutbank, and dam bank sediment samples. The sediment samples have been subjected to a total digestion technique and analyzed by atomic absorption spectrometer for metals including Pb, Zn, Cd, Ni, Co, Cr, Cu, Mn, and Fe. XRD analyses indicate that the sediments of Kafrain Dam are mainly composed of calcite, dolomite, quartz, orthoclase, microcline, kaolinite, and illite reflecting the geology of the study area. The enrichment factor (EF) and geoaccumulation index (I geo) have been calculated and the relative contamination levels assessed in the study area. The calculations of I geo are found to be more reliable than of those of EF. The enrichment of metals in the study area has been observed to be relatively high. I geo results reveal that the study area is not contaminated with respect to Ni, Co, Cr, Cu, and Mn; moderately to strongly contaminated with Pb; and strongly to extremely contaminated with Cd and Zn. The high contents of Pb, Cd, and Zn in the study area result from anthropogenic activities in the catchment area of the dam site. These sources mainly include the agricultural activities, sewage discharging from various sources within the study area (effluent of wastewater treatment plants, treated and untreated wastewaters, and irrigation return water), and the several industries located in the area. Degrees of correlations among the various metals in the study area are suggested by the results and the intermetallic relationship.  相似文献   

6.
A geochemical study of the bottom sediments of Lake Shinji and the River Ohashi in southwestern Japan was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing enrichment factor (EF), pollution load index (PLI), and geoaccumulation index (I geo). Present-day water quality was also assessed. Results showed that the water quality of Lake Shinji contrasts slightly between the upper and lower parts. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements and total sulfur (TS). Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Shinji sediments were 10, 29, 143, 27, 19, and 54 ppm, respectively, compared to 6, 18, 57, 16, 10, and 37 ppm in the river sediments. Based on the EF, PLI, and I geo, the lake sediments are moderately to strongly polluted with respect to As, moderately polluted with Pb, Zn, and Cr, and unpolluted with Cu and Ni. The high EF and I geo for As, Pb, and Zn in the lake sediments indicate that metal concentration has occurred in Shinji. Increases in the abundances of these metals are likely related to the fine-grained nature of the sediments, reducing conditions of the bottom sediments, enrichment in organic matter, and possibly a minor contribution from non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3 and TS, suggesting that Fe oxides and sulfides play a role in controlling abundances in the investigated areas.  相似文献   

7.
Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I geo), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I geo values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.  相似文献   

8.
BouIsmail (BIB) and Algiers (AB) are the most important bays in Algeria, where busy shipping activities and various industry complexes introduce different pollutants including heavy metals to the aquatic environment. The main goal of this study was to assess the contamination levels of heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in surface sediments and red mullet (Mullus barbatus) of the BIB and AB and to examine the possibility of the use of their enrichment factors (EFs) to track down the sources of metals (natural processes or human activity). The geoaccumulation index (I geo) was calculated as a criterion to indicate the contamination level for each heavy metal. Moreover, geographical information systems based on spatial analysis methods (inverse distance weighting (IDW)) and statistical approaches (the principal component (PCA)) were performed to assess the spatial influences of multiple anthropogenic sources in different sampled areas. The results of both EF and I geo revealed that the study area is exposed to various anthropogenic activities. The pollution load index (PLI) values of sediment samples in the different sites of Algiers and BIB ranged from 0.2 to 3.4 illustrating highly contaminated sediments. Significant bioaccumulation of Cd, Cu, Hg, Pb, and Zn (bioaccumulation factor >100%) were observed in muscle and liver of red mullet, suggesting potential health risks through consuming this fish species.  相似文献   

9.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

10.
The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4–6), whereas NBC sediments are enriched in Sn, Cu, Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metals found in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai Metropolitan City have negatively influenced on the surrounding aquatic ecosystem.  相似文献   

11.
Soil, rock and water samples were collected from India??s oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E f), geoaccumulation index (I geo) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.  相似文献   

12.
The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements’ impact and the localization of their sources.  相似文献   

13.
Ust-Kamenogorsk is one of the largest cities and industrial centers in Kazakhstan. Non-ferrous metallurgy (Zn–Pb smelter) has acted as a predominating industrial branch in the city since late 1940s. The industrial plants are situated directly adjacent to the residential area of the city which creates grievous ecotoxicological hazard. In the present paper, we aimed at assessing the trace metal pollution of top soils in Ust-Kamenogorsk and its potential threats to the local population. The top soils were sampled at 10 sites throughout the city center. We determined the physical and chemical properties of soils as well as the contents of Cd, Cu, Pb, and Zn. In addition, the soil samples were subjected to a five-step sequential extraction to ascertain the fractionation of trace metals. On this basis, we calculated the geoaccumulation index (Igeo) and pollution load index (PLI) and assessed bioavailability of the elements. From our data, it emerged that the soils displayed a strong polymetallic pollution. PLI was as high as 33.4. Throughout the city, the trace metal contents exceeded the geochemical background and allowable values for residential, recreational, and institutional areas. The Igeo obtained were 3.7–6.5 for Cd, 1.5–4.7 for Cu, 2.8–5.7 for Pb, and 2.6–4.6 for Zn. The soils in Ust-Kamenogorsk displayed extremely high contamination with Cd, moderate to strong contamination with Pb and Zn, and low to moderate contamination with Cu. Cd and Pb were found to be the most bioavailable elements. The mobility of trace metals in the soils changed in the order Cd > Pb > Zn > Cu.  相似文献   

14.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

15.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

16.
Geochemical investigations of tidal flat coastal sediments at Ogori, Ozuki, and Kasado in Yamaguchi Bay of southwest Japan were conducted to determine their metal concentrations and to assess contamination levels, compared with sediment quality guidelines (SQG) and several pollutant indicators. Selected major oxides, trace elements, and total sulfur (TS) were determined by X-ray fluorescence. pH values of most samples were alkaline, indicating anoxic conditions. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in Ozuki sediments were 11, 27, 109, 21, 19, and 52 mg/kg, respectively, compared to 9, 29, 80, 16, 18, and 42 mg/kg at Ogori and 12, 27, 151, 34, 30 and 80 mg/kg at Kasado, respectively. Average concentrations of As, Zn, and Cu in all samples and TiO(2), Fe(2)O(3), and P(2)O(5) at Kasado were greater than those of the upper continental crust. Contamination levels were assessed based on SQG, contamination factors (CF), pollution load index (PLI), enrichment factor (EF), and index of geoaccumulation (Igeo). According to the SQG of the US EPA, the sediments were heavily polluted with respect to As, whereas Zn, Cu, Ni, and Cr were classed as moderately polluted. The elevated CF values of As, Pb, and Zn identify moderate to considerable contamination, indicating that these metals are potentially toxic in the study area. Based on PLI and EF, the study sites are moderate to moderately severe polluted with As and Pb, moderately polluted with Zn, and weakly contaminated to noncontaminated with Cu, Ni, and Cr. The highest Igeo values for As, Pb, and Zn in the surface and core sediments reflected the tendency of metal contamination that seems to be related to their fine-grained nature, organic matter-rich sediments, and anthropogenic point sources. Trace metal contents were strongly correlated with Fe(2)O(3) and TiO(2), suggesting that Fe oxyhydroxides and detrital clastic load play a role in controlling abundances in the study area.  相似文献   

17.
In this study, the concentrations of 13 elements (Al, Fe, Mn, Cr, Ni, Zn, Co, As, Pb, Cu, Mo, Hg, and Cd) were determined in the sediments of three different sites in the Kapulukaya Dam Lake between May 2007 and November 2008. They ranged from 1.47 to 4.64 for Al, 0.92 to 3.48 for Fe (in percent), 326.60 to 1053.00 for Mn, 98.00 to 1,116.00 for Cr, 24.70 to 127.10 for Ni, 14.80 to 124.20 for Zn, 11.0 to 43.20 for Co, 5.00 to 29.30 for Cu, 9.10 to 69.70 for As, 8.60 to 34.00 for Pb, 2.50 to 5.20 for Mo, 1.00 to 1.60 for Hg, and 0.50 to1.80 for Cd in microgram per gram dry weight sediment. The contamination degree of the sediment was assessed on the basis of enrichment factor and corresponding sediment quality guideline. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that the effect of man-made activities on the occurrence of concentrations could be accounted for the majority of heavy metals namely Mn, As, Ni, Cu, Zn, Cr, Co, Mo, and Cd, whereas such affect was not detected for Hg and Pb. The maximum values of the EF were represented by As, minimum values by Hg at all sites. Mean EF values were 36.60 and 0.70 for As and Hg, respectively. This study has clearly assessed a certain level of heavy metal pollution in the region, based particularly on the findings from sediment.  相似文献   

18.
Concentrations of selected heavy metals (Cd, Pb, Zn, Cu, Mn, and Fe) in surface sediments from 66 sites in both northern and eastern Mediterranean Sea–Boughrara lagoon exchange areas (southeastern Tunisia) were studied in order to understand current metal contamination due to the urbanization and economic development of nearby several coastal regions of the Gulf of Gabès. Multiple approaches were applied for the sediment quality assessment. These approaches were based on GIS coupled with chemometric methods (enrichment factors, geoaccumulation index, principal component analysis, and cluster analysis). Enrichment factors and principal component analysis revealed two distinct groups of metals. The first group corresponded to Fe and Mn derived from natural sources, and the second group contained Cd, Pb, Zn, and Cu originated from man-made sources. For these latter metals, cluster analysis showed two distinct distributions in the selected areas. They were attributed to temporal and spatial variations of contaminant sources input. The geoaccumulation index (I geo) values explained that only Cd, Pb, and Cu can be considered as moderate to extreme pollutants in the studied sediments.  相似文献   

19.
20.
In this paper, the heavy metal levels (Cu, Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, Hg), organic carbon, and chlorophyll degradation products were studied to prove their ecological effects in Lake Ç?ld?r, where fossil fuels are used as an energy source in the studied area for most of the year, and domestic waste from settlements is discharged directly into the lake. Sediment samples were collected from six sites on the northern shore of Ç?ld?r Lake, Turkey in November 2012. Enrichment (EF) and contamination factor (CF) values were determined, and Pollution Load (PLI) and Potential Ecological Risk (PER) indices were calculated. Average concentrations of heavy metals in the sediments were, in descending order, Fe?>?Mn?>?Zn?>?Ni?>?Cr?>?Cu?>?Pb?>?As?>?Cd?>?Hg, respectively. According to mean values, the source of these elements may be considered natural due to lack of enrichment in Cu, Pb, Zn, Ni, and Cr in the sediment samples. Regarding enrichment of As, Cd, Mn, and Hg, the highest EF belongs to Hg. PLI and PER values indicate there are moderate ecological risk in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号