首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Nutrient-poor, serpentinitic soils in the San Francisco Bay area sustain a native grassland that supports many rare species, including the Bay checkerspot butterfly ( Euphydryas editha bayensis ). Nitrogen (N) deposition from air pollution threatens biodiversity in these grasslands because N is the primary limiting nutrient for plant growth on serpentinitic soils. I investigated the role of N deposition through surveys of butterfly and plant populations across different grazing regimes, by literature review, and with estimates of N deposition in the region. Several populations of the butterfly in south San Jose crashed following the cessation of cattle grazing. Nearby populations under continued grazing did not suffer similar declines. The immediate cause of the population crashes was rapid invasion by introduced annual grasses that crowded out the larval host plants of the butterfly. Ungrazed serpentinitic grasslands on the San Francisco Peninsula have largely resisted grass invasions for nearly four decades. Several lines of evidence indicate that dry N deposition from smog is responsible for the observed grass invasion. Fertilization experiments have shown that soil N limits grass invasion in serpentinitic soils. Estimated N deposition rates in south San Jose grasslands are 10–15 kg  N/ha/year; Peninsula sites have lower deposition, 4–6 kg N/ha/year. Grazing cattle select grasses over forbs, and grazing leads to a net export of N as cattle are removed for slaughter. Although poorly managed cattle grazing can significantly disrupt native ecosystems, in this case moderate, well-managed grazing is essential for maintaining native biodiversity in the face of invasive species and exogenous inputs of N from nearby urban areas.  相似文献   

2.
Enemy release of exotic plants from soil pathogens has been tested by examining plant-soil feedback effects in repetitive growth cycles. However, positive soil feedback may also be due to enhanced benefit from the local arbuscular mycorrhizal fungi (AMF). Few studies actually have tested pathogen effects, and none of them did so in arid savannas. In the Kalahari savanna in Botswana, we compared the soil feedback of the exotic grass Cenchrus biflorus with that of two dominant native grasses, Eragrostis lehmanniana and Aristida meridionalis. The exotic grass had neutral to positive soil feedback, whereas both native grasses showed neutral to negative feedback effects. Isolation and testing of root-inhabiting fungi of E. lehmanniana yielded two host-specific pathogens that did not influence the exotic C. biflorus or the other native grass, A. meridionalis. None of the grasses was affected by the fungi that were isolated from the roots of the exotic C. biflorus. We isolated and compared the AMF community of the native and exotic grasses by polymerase chain reaction-denaturing gradient gel elecrophoresis (PCR-DGGE), targeting AMF 18S rRNA. We used roots from monospecific field stands and from plants grown in pots with mixtures of soils from the monospecific field stands. Three-quarters of the root samples of the exotic grass had two nearly identical sequences, showing 99% similarity with Glomus versiforme. The two native grasses were also associated with distinct bands, but each of these bands occurred in only a fraction of the root samples. The native grasses contained a higher diversity of AMF bands than the exotic grass. Canonical correspondence analyses of the AMF band patterns revealed almost as much difference between the native and exotic grasses as between the native grasses. In conclusion, our results support the hypothesis that release from soil-borne enemies may facilitate local abundance of exotic plants, and we provide the first evidence that these processes may occur in arid savanna ecosystems. Pathogenicity tests implicated the involvement of soil pathogens in the soil feedback responses, and further studies should reveal the functional consequences of the observed high infection with a low diversity of AMF in the roots of exotic plants.  相似文献   

3.
St John MG  Wall DH  Hunt HW 《Ecology》2006,87(5):1314-1324
Associations between plants and animals in aboveground communities are often predictable and specific. This has been exploited for the purposes of estimating the diversity of animal species based on the diversity of plant species. The introduction of invasive alien plants into an ecosystem can result in dramatic changes in both the native plant and animal assemblages. Few data exist at the species level to determine whether belowground animal assemblages share the same degree of association to plants. The hypotheses that soil mites (Acari) form assemblages specifically associated with different native grass species in an unmanipulated natural ecosystem and that invasive alien grasses will impact soil mite assemblage composition in this setting were tested. Soil mites sampled beneath five native and two invasive alien species of grasses at the Konza Prairie Biological Station, Kansas, USA, were similarly abundant, species rich, diverse, and taxonomically distinct. No mite species had affinities for a specific grass species. There was no evidence from analysis of similarity, canonical correspondence analysis, or a nonparametric assemblage analysis that the assemblage composition of soil mites was specific to grass species. Results suggest that soil mite assemblages were more related to characteristics of the plant assemblage as a whole or prevailing soil conditions. The most recent invasive alien grass did not support a successionally younger mite fauna, based on the ratio of mesostigmatid to oribatid mites, and neither of the two invasive grasses influenced mite assemblage structure, possibly because they had not yet substantially altered the soil environment. Our results suggest that extrapolations of soil mite diversity based on assumptions of plant specificity would be invalid.  相似文献   

4.
Differing Effects of Cattle Grazing on Native and Alien Plants   总被引:5,自引:0,他引:5  
Abstract:   Habitat managers use cattle grazing to reduce alien plant cover and promote native species in California grasslands and elsewhere in the western United States. We tested the effectiveness of grazing as a restoration method by examining the effects of herbivory on native and alien plants. At Carrizo Plain National Monument, California, we surveyed native and alien species cover in adjacent grazed and ungrazed areas. We also established experimental plots in which plants were clipped or mulch (dead biomass) was removed. In addition, we clipped plants grown in pots and plants in the field that grew with and without competitors. Native species were negatively affected by clipping in 1999, 2000, and 2001, whereas alien species were unaffected. In the experimental field plots, the European annual forb Erodium cicutarium compensated in growth and reproduction following simulated herbivory. In contrast, growth and reproduction of the native perennial bunchgrass Poa secunda were reduced 1 year after clipping. In pots, E. cicutarium overcompensated and grasses undercompensated. In the field, European grasses were unaffected by the removal of competitors. It is unclear by what mechanism E. cicutarium was able to compensate, but the ability may be related to its basal rosette growth form and indeterminately growing inflorescences. The native California grassland community assembled in the absence of grazing herds, whereas invasive European species have been exposed to grazing for centuries. It may be that these invaders have adaptations that better enable them to recover from grazing. In the grassland we studied, the strategy of livestock grazing for restoration is counterproductive. It harms native species and promotes alien plant growth.  相似文献   

5.
Competitive outcomes among plants can vary in different abiotic and biotic conditions. Here we tested the effects of two phylotypes of Alternaria endophytes on the growth, competitive effects, and competitive responses of the exotic invasive forb Centaurea stoebe. Centaurea stoebe was a better competitor against North American grass species than grasses from its European home range in the absence of endophytes. However, one endophyte both increased the biomass of C. stoebe and reduced the competitive effect of North American grasses on C. stoebe. The competitive effects of C. stoebe on grass species native to North America were enhanced by both fungal endophytes, but not for native European grasses. We do not know the mechanism by which endophytes increased C. stoebe's competitive ability, and particularly against biogeographically new neighbors, but one endophyte increased the competitive ability of C. stoebe without increasing its size, suggesting mechanisms unrelated to increased growth. We tested only a fraction of the different endophytic fungi that have been found in C. stoebe, only scratching the surface of understanding their indirect effects. However, our results are the first to demonstrate such effects of a fungal endophyte infecting an invasive forb, and one of the few to show that endophyte effects on competition do not have to be mediated through herbivory.  相似文献   

6.
Thomson DM 《Ecology》2007,88(12):3126-3134
Models of source-sink and other spatial patch dynamics have generated a number of ideas and predictions about species range expansion, the evolution of local adaptation, and the factors influencing population persistence, but relatively few empirical studies have applied these ideas due to the difficulty of measuring both patch-specific demography and movement rates. In this study, I used a combination of mark-recapture experiments, model fitting, and demographic approaches to ask how habitat-specific differences in population growth and dispersal affect spread of the invasive grass Aegilops triuncialis into serpentine environments. A. triuncialis germinated at lower rates but exhibited equivalent survival and greater growth in edge (extreme serpentine) than in core populations, even accounting for density differences between habitats. Estimated growth rates (lambda) for four of five edge subpopulations were strongly positive, ranging from lambda = 1.32 to 2.09 without propagule input from adjacent habitat. Local dispersal was best described by an exponential kernel, with a mean dispersal distance about twice as long on the edge (0.24-0.40 m) as in the core (0.18 m). Twenty-five percent of marked spikes in the edge were not relocated within the patch, suggesting greater rates of either seed predation or long-distance dispersal that reduced population growth. These results suggest that A. triuncialis can successfully spread into extreme serpentine habitats without sustained propagule input from adjacent populations. Further, asymmetric dispersal that may be both habitat- and density-dependent could slow growth rates on the edge. This pattern may also increase the importance of harsh edge patches as a source of long-distance dispersers.  相似文献   

7.
Grman E 《Ecology》2012,93(4):711-718
Theory suggests that cheaters threaten the persistence of mutualisms, but that sanctions to prevent cheating can stabilize mutualisms. In the arbuscular mycorrhizal symbiosis, reports of parasitism suggest that reductions in plant carbon allocation are not universally effective. I asked whether plant species differences in mycorrhizal responsiveness would affect both their susceptibility to parasitism and their reduction in allocation to non-beneficial arbuscular mycorrhizal fungi (AMF) in high-phosphorus soils. In a greenhouse experiment, I found that two C3 grasses, Bromus inermis and Elymus repens, effectively suppressed root colonization and AMF hyphal abundance. Increases in soil phosphorus did not reduce the degree to which AMF increased plant biomass. In contrast, two C4 grasses, Andropogon gerardii and Schizachyrium scoparium, more weakly reduced root colonization and failed to suppress AMF hyphal abundance. Consequently, they experienced strong declines in their response to AMF, and one species suffered parasitism. Thus, species differ in susceptibility to parasitism and their reduction in allocation to non-beneficial AMF. These differences may affect the distribution and abundance of plants and AMF, as well as the stability of the mutualism.  相似文献   

8.
Changes in the species composition of biotic communities may alter patterns of natural selection occurring within them. Native perennial grass species in the Intermountain West are experiencing a shift in the composition of interspecific competitors from primarily perennial species to an exotic, annual grass. Thus traits that confer an advantage to perennial grasses in the presence of novel annual competitors may evolve in invaded communities. Here I show that such traits are apparent in populations of a native perennial grass, big squirreltail (Elymus multisetus M.E. Jones), exposed to cheatgrass (Bromus tectorum L.) competitors. Dormant big squirreltail plants were collected from cheatgrass-invaded and uninvaded sites near Bordertown, California, USA, a mid-elevation (1600 m) sagebrush community, and transplanted into pots in a greenhouse. Individual plants were split into equal halves. One half was grown with competition from cheatgrass, and the other half was grown without competition. Plants collected from invaded sites responded more quickly to watering, growing more leaves in the first 10 days after transplanting. In addition, big squirreltail plants collected from invaded areas experienced a smaller decrease in plant size when grown with competition than did plants collected from uninvaded areas. Accordingly, while there were fewer big squirreltail individuals in the invaded sites, they were more competitive with cheatgrass than were the more abundant conspecifics in nearby uninvaded areas. It is possible that annual grasses were the selective force that caused these population differences, which may contribute to the long-term persistence of the native populations. While it is tempting to restore degraded areas to higher densities of natives (usually done by bringing in outside seed material), such actions may impede long-term adaptation to new conditions by arresting or reversing the direction of ongoing natural selection in the resident population. If hot spots of rapid evolutionary change can be identified within invaded systems, these areas should be managed to promote desirable change and could serve as possible sources of restoration material or reveal traits that should be prioritized during the development of restoration seed material.  相似文献   

9.
酸雨对外来植物入侵的影响   总被引:2,自引:0,他引:2  
廖周瑜  彭少麟 《生态环境》2007,16(2):639-643
酸雨和外来种入侵都是全球关注的问题。结合外来入侵植物的生态适应特性以及酸雨的危害特征,系统分析了酸雨对外来植物入侵产生的影响。酸雨对外来植物入侵的影响是复杂多样的。酸雨导致群落冠层稀疏,群落透光率增加,加之氮沉降后土壤、水体氮素的增加,有利于生长力强的外来喜阳植物入侵;酸雨加速土壤酸化,促使基本离子淋失以及A1毒等危害植物的生长发育,植物的内源激素以及化感作用发生改变,适应力和耐受力强的外来植物在与本地植物竞争中处于相对优势而成为入侵种;酸雨以及外来植物入侵改变了土壤微生物群落结构,影响本地植物的生长而促使外来植物的入侵。  相似文献   

10.
Stricker KB  Stiling P 《Ecology》2012,93(8):1902-1911
The enemy release hypothesis (ERH) is often cited to explain why some plants successfully invade natural communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their native range but are relieved of this pressure where their enemies have not been co-introduced. Some studies have shown that invasive plants sustain lower levels of herbivore damage when compared to native species, but how damage affects fitness and population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida (USA) to experimentally test the ERH, addressing deficiencies in our understanding of the role of natural enemies in plant invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the ERH, indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion of E. uniflora leaves than those of its native congeners. This interaction is particularly interesting because M. undatus and E. uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore. Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to accumulate and new communities assemble worldwide.  相似文献   

11.
As population modeling is increasingly called upon to guide policy and management, it is important that we understand not only the central tendencies of our study systems, but the consequences of their variation in space and time as well. The invasive plant Alliaria petiolata (garlic mustard) is actively managed in the United States and is the focus of a developing biological control program. Two weevils (Coleoptera: Curculionidae: Ceutorhynchus) that reduce fecundity (C. alliariae) and rosette survival plus fecundity (C. scrobicollis) are under consideration for release pending host specificity testing. We used a demographic modeling approach to (1) quantify variability in A. petiolata growth and vital rates and (2) assess the potential for single- or multiple-agent biocontrol to suppress growth of 12 A. petiolata populations in Illinois and Michigan studied over three plant generations. We used perturbation analyses and simulation models with stochastic environments to estimate stochastic growth rates (lambda(S)) and predict the probability of successful management using either a single biocontrol agent or two agent species together. Not all populations exhibited invasive dynamics. Estimates of lambda(S) ranged from 0.78 to 2.21 across sites, while annual, deterministic growth (lambda) varied up to sevenfold within individual sites. Given our knowledge of the biocontrol agents, this analysis suggests that C. scrobicollis alone may control A. petiolata at up to 63% of our study sites where lambda >1, with the combination of both agents predicted to succeed at 88% of sites. Across sites and years, the elasticity rankings were dependent on lambda. Reductions of rosette survival, fecundity, or germination of new seeds are predicted to cause the greatest reduction of lambda in growing populations. In declining populations, transitions affecting seed bank survival have the greatest effect on lambda. This contrasts with past analyses that varied parameters individually in an otherwise constant matrix, which may yield unrealistic predictions by decoupling natural parameter covariances. Overall, comparisons of stochastic and deterministic growth rates illustrate how analyses of individual populations or years could misguide management or fail to characterize complex traits such as invasiveness that emerge as attributes of populations rather than species.  相似文献   

12.
Abstract:  Large, high-severity wildfires remove vegetation cover and expose mineral soil, ofen causing erosion and runoff during postfire rain events to increase dramatically. Land-management agencies in the United States are required to assess site conditions after wildfire and, where necessary, implement emergency watershed rehabilitation measures to help stabilize soil; control movement of water, sediment, and debris; prevent permanent impairment of ecosystem structure and function; and mitigate significant threats to human health, safety, life, property, or downstream values. One of the most common postfire treatments is broadcast seeding of grasses, usually from aircraft. Non-native annual or perennial grasses typically are used to provide quick, temporary ground cover to hold soil in place until native plants are reestablished. Critics argue that seeded grasses compete with native vegetation and do not effectively reduce erosion. Few data exist on the effectiveness of erosion control; less than half of the studies I reviewed showed reduced sediment movement with seeding. In all vegetation types, successful growth of seeded grasses—enough to affect erosion—appears to displace native or naturalized species, including shrub and tree seedlings. Due to the competitiveness of seeded grasses, they are used to attempt suppression of noxious weeds in some postfire seeding operations. In burned sagebrush range, postfire seeding is frequently used to replace non-native cheatgrass (  Bromus tectorum ) with native or introduced bunchgrasses, with at least short-term success. In recent years, native species and sterile cereal grains have increasingly been used for seeding. Use of aerially applied straw mulch has increased as well, with the risk of weed introduction from contaminated bales. More research on the effectiveness and ecosystem impacts of these alternatives is needed.  相似文献   

13.
The conservation of rare plant species hinges on our ability to identify the underlying mechanisms that limit rare plant populations. Theory on rarity suggests that both predispersal seed predation and competition can be important mechanisms influencing abundance and/or distribution of rare plant populations. Yet few studies have tested these interactions, and those that have evaluated each mechanism independently. Astragalus sinuatus Piper (Whited's milkvetch) is a narrow endemic plant species restricted to eight populations within a 10-km2 area in eastern Washington. We used experimental and observational methods to test the effects of native insect predispersal seed predators and an invasive grass (Bromus tectorum L. [cheatgrass]) on seed set and population density of A. sinuatus. We quantified per capita seed production and pod predation rates across four sites and among four years. Seed predation rates were high across four sites (66-82%) and all years (65-82%). Experimental reduction of predispersal seed predators significantly increased per capita seed set of A. sinuatus (164-345%) at two experimental sites. Concurrently, two seed addition experiments demonstrated the effect of seed loss and presence of B. tectorum on seedling recruitment and establishment of A. sinuatus over four growing seasons. In the first seed addition experiment, we found no difference in recruitment and establishment between low (40) and high (120) seed addition levels. In the second addition experiment (one level of addition; 40 seeds), we found that recruitment and survivorship increased 200% in plots where B. tectorum was removed compared to plots where B. tectorum was present. Thus, seed addition had no impact in the presence of B. tectorum; conversely, in the absence of B. tectorum, seed addition was highly effective at increasing population numbers. Results suggest that, in areas where B. tectorum is present, recruitment is site limited, and it is seed limited when B. tectorum is absent. We recommend that managers reduce B. tectorum in an effort to increase population growth of A. sinuatus; in areas where B. tectorum is absent, short-term reduction of insect predators should be considered as a strategy to increase population growth of this rare species.  相似文献   

14.
Cavaleri MA  Sack L 《Ecology》2010,91(9):2705-2715
Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.  相似文献   

15.
Vegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.  相似文献   

16.
Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest contiguous areas of sagebrush steppe habitat in the state until large wildfires burned the majority of it in 2000 and 2007. We analyzed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent postfire restoration efforts, affected communities' successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low-elevation communities, previously dominated by obligate seeders, moved furthest from their initial composition and were dominated by weedy, early-successional species in 2009. Higher-elevation sites with resprouting shrubs, native bunchgrasses, and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, although there was some recovery where communities were dominated by resprouters. Bromus tectorum dominance was reduced by herbicide application in areas where it was previously abundant, but it increased significantly in untreated areas. Several resprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant B. tectorum. Our results suggest that community dynamics can be understood through a state and transition model with two axes (shrub/grass and native/invasive abundance), although such models also need to account for differences in plant functional traits and disturbance regimes. We use our results to develop a conceptual model that will be validated with further research.  相似文献   

17.
Sperry LJ  Belnap J  Evans RD 《Ecology》2006,87(3):603-615
The nonnative annual grass Bromus tectorum has successfully replaced native vegetation in many arid and semiarid ecosystems. Initial introductions accompanied grazing and agriculture, making it difficult to separate the effects of invasion from physical disturbance. This study examined N dynamics in two recently invaded, undisturbed vegetation associations (C3 and C4). The response of these communities was compared to an invaded/ disturbed grassland. The invaded/disturbed communities had higher surface NH4+ input in spring, whereas there were no differences for surface input of NO3-. Soil inorganic N was dominated by NH4+, but invaded sites had greater subsurface soil NO3-. Invaded sites had greater total soil N at the surface four years post-invasion in undisturbed communities, but total N was lower in the invaded/disturbed communities. Soil delta15N increased with depth in the noninvaded and recently invaded communities, whereas the invaded/disturbed communities exhibited the opposite pattern. Enriched foliar delta15N values suggest that Bromus assimilated subsurface NO3-, whereas the native grasses were restricted to surface N. A Rayleigh distillation model accurately described decomposition patterns in the noninvaded communities where soil N loss is accompanied by increasing soil delta15N; however, the invaded/ disturbed communities exhibited the opposite pattern, suggesting redistribution of N within the soil profile. This study suggests that invasion has altered the mechanisms driving nitrogen dynamics. Bromus litter decomposition and soil NO3- concentrations were greater in the invaded communities during periods of ample precipitation, and NO3- leached from the surface litter, where it was assimilated by Bromus. The primary source of N input in these communities is a biological soil crust that is removed with disturbance, and the lack of N input by the biological soil crust did not balance N loss, resulting in reduced total N in the invaded/disturbed communities. Bromus produced a positive feedback loop by leaching NO3- from decomposing Bromus litter to subsurface soil layers, accessing that deepsoil N pool with deep roots and returning that N to the surface as biomass and subsequent litter. Lack of new inputs combined with continued loss will result in lower total soil N, evidenced by the lower total soil N in the invaded/disturbed communities.  相似文献   

18.
Glassman SI  Casper BB 《Ecology》2012,93(7):1550-1559
Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions. The relationship between AMF and their host plants in the context of other soil microbes was studied along a gradient of heavy metal contamination originating at the site of zinc smelters that operated for a century. The site is currently under restoration. Native C3 grasses have reestablished, and C4 grasses native to the region but not the site were introduced. Interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, one C3 grass (Deschampsia flexuosa), and one C4 grass (Sorghastrum nutans) were investigated using soils from the two extremes of the contamination gradient in a full factorial greenhouse experiment. After 12 weeks, plant biomass and root colonization by AMF and non-mycorrhizal microbes were measured. Plants from both species grew much larger in soil from low-contaminated (LC) origin than high-contaminated (HC) origin. For S. nutans, the addition of a non-AMF soil microbial wash of either origin increased the efficacy of AMF from LC soils but decreased the efficacy of AMF from HC soils in promoting plant growth. Furthermore, there was high mortality of S. nutans in HC soil, where plants with AMF from HC died sooner. For D. flexuosa, plant biomass did not vary with AMF source or the microbial wash treatment or their interaction. While AMF origin did not affect root colonization of D. flexuosa by AMF, the presence and origin of AMF did affect the number of non-mycorrhizal (NMF) morphotypes and NMF root colonization. Adding non-AMF soil biota reduced Zn concentrations in shoots of D. flexuosa. Thus the non-AMF biotic context affected heavy metal sequestration and associated NMF in D. flexuosa, and it interacted with AMF to affect plant biomass in S. nutans. Our results should be useful for improving our basic ecological understanding of the context-dependency of plant-soil interactions and are potentially important in restoration of heavy-metal-contaminated sites.  相似文献   

19.
Plant survival, growth, and flowering are size dependent in many plant populations but also vary among individuals of the same size. This individual variation, along with variation in dispersal caused by differences in, e.g., seed release height, seed characteristics, and wind speed, is a key determinant of the spread rate of species through homogeneous landscapes. Here we develop spatial integral projection models (SIPMs) that include both demography and dispersal with continuous state variables. The advantage of this novel approach over discrete-stage spread models is that the effect of variation in plant size and size-dependent vital rates can be studied at much higher resolution. Comparing Neubert-Caswell matrix models to SIPMs allowed us to assess the importance of including individual variation in the models. As a test case we parameterized a SIPM with previously published data on the invasive monocarpic thistle Carduus nutans in New Zealand. Spread rate (c*) estimates were 34% lower than for standard spatial matrix models and stabilized with as few as seven evenly distributed size classes. The SIPM allowed us to calculate spread rate elasticities over the range of plant sizes, showing the size range of seedlings that contributed most to c* through their survival, growth and reproduction. The annual transitions of these seedlings were also the most important ones for local population growth (lambda). However, seedlings that reproduced within a year contributed relatively more to c* than to lambda. In contrast, plants that grow over several years to reach a large size and produce many more seeds, contributed relatively more to lambda than to c*. We show that matrix models pick up some of these details, while other details disappear within wide size classes. Our results show that SIPMs integrate various sources of variation much better than discrete-stage matrix models. Simpler, heuristic models, however, remain very valuable in studies where the main goal is to investigate the general impact of a life history stage on population dynamics. We conclude with a discussion of future extensions of SIPMs, including incorporation of continuous time and environmental drivers.  相似文献   

20.
Some invasive plant species appear to strongly suppress neighbors in their nonnative ranges but much less so in their native range. We found that in the field in its native range in Mexico, the presence of Ageratina adenophora, an aggressive Neotropical invader, was correlated with higher plant species richness than found in surrounding plant communities where this species was absent, suggesting facilitation. However, in two nonnative ranges, China and India, A. adenophora canopies were correlated with much lower species richness than the surrounding communities, suggesting inhibition. Volatile organic compound (VOC) signals may contribute to this striking biogeographical difference and the invasive success of A. adenophora. In controlled experiments volatiles from A. adenophora litter caused higher mortality of species native to India and China, but not of species native to Mexico. The effects of A. adenophora VOCs on seedling germination and growth did not differ between species from the native range and species from the nonnative ranges of the invader. Litter from A. adenophora plants from nonnative populations also produced VOCs that differed quantitatively in the concentrations of some chemicals than litter from native populations, but there were no chemicals unique to one region. Biogeographic differences in the concentrations of some volatile compounds between ranges suggest that A. adenophora may be experiencing selection on biochemical composition in its nonnative ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号