首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
CVS direct preparations usually achieve limited resolution and are better at detecting numerical rather than structural abnormalities. A CVS direct preparation analyzed using G-banding revealed a 47,XY,+G karyotype in 5 of 11 cells and was reported as mosaic for trisomy 21. Subsequent analysis of the CVS culture found only normal male cells. Amniocentesis revealed both normal male cells and cells with an extra F-group chromosome. Fluorescence in situ hybridization (FISH) identified this chromosome to be an isochromosome from the short arm of chromosome 12 [i(12)(p10)]. The amniocyte karyotype was reported as 47,XY,+i(12)(p10)[12]/46,XY[8].ish i(12)(p10)(wcp12+), which is associated with Pallister–Killian syndrome. Reexamination of the CVS direct preparation by FISH with a chromosome 12 centromere probe confirmed the karyotype of this tissue to be 47,XY,+mar[5]/46,XY[6].nuc ish 12cen(D12Z3 × 3)/12cen(D12Z3 × 2). Thus, multiple studies, including amniocentesis and fluorescence in situ hybridization, may be required to fully and accurately evaluate abnormalities detected by CVS. This case also indicates that mosaicism for supernumerary isochromosomes may have a complex origin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Six cases are reported with discrepancies between the karyotypes of placental cells and cells from other fetal tissue. The respective findings were: (a) 48,+7,+18 resp. 47,+18. (b) 46, i(18q) resp. 46, del18(p11). (c) 46, XX resp. 46, XX/47, XXX. (d) 46, X, Yq+ and 46, XY resp. 46, XY. (e) 46/47,+12 resp. 46. (f) 46/47,+5 resp. 46. These differences were found in both early and term pregnancies. Care should be taken in deducing the fetal karyotype from the chromosomal pattern of placental cells.  相似文献   

3.
A chorion villus sample (CVS) biopsied at 11 weeks' gestation for raised nuchal translucency, revealed monosomy X (presumptive 45,X karyotype) by QF-PCR for rapid aneuploidy testing for chromosomes 13, 18, 21, X and Y. Long-term culture gave the karyotype: 47,XY,+ 21[66]/49,XYY,+ 21,+ 21 [22]. This discrepancy prompted redigestion of the combined residual villus fragments from the original QF-PCR assay. The repeat QF-PCR assay identified the presence of trisomy 21 and a Y chromosome consistent with a 47,XY,+ 21 karyotype. A double non-disjunction event early in embryogenesis in a 47,XY,+ 21 conceptus with subsequent cell lineage compartmentalisation of the three observed cell lines (45,X; 47,XY,+ 21 and 49,XYY,+ 21,+ 21) would account for these results. This is the first reported case to describe complete discrepancy at diagnosis between abnormal karyotypes detected by QF-PCR rapid aneuploidy testing and a cultured karyotype in the same CVS. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
46,XY, −22,+t(22;22)(p11;q11) or i(22q) was diagnosed in 15/15 cells from two cultures from the amniotic fluid culture of a 31-year-old patient whose fetus demonstrated cystic hygroma on ultrasound. Cytogenetic studies performed on fetal skin from the abortus revealed the same karyotype as that seen on amniocentesis, but the placenta demonstrated a 46,XY,46,XY, −22,+t(22;22) or i(22q) mosaicism, with 65 per cent of the cells being 46,XY. This case provides an example of placental mosaicism for a normal male karyotype, while the fetus demonstrated non-mosaic trisomy 22.  相似文献   

5.
We report on a live-born male with 46,XY/47,XY+4/47,XY,+6 mosaicism. Trisomy 4 mosaicism was detected by karyotyping chorionic villus samples (CVS) and was confirmed by the analysis of 16 metaphases obtained from cultured amniotic fluid cells. Eight metaphases were normal (46,XY), two had trisomy 4 (47,XY,+4), and two had trisomy 6 (47,XY,+6). Two postnatal chromosomal analyses of blood lymphocytes at birth and at the age of one week were normal. Chromosomal analysis of cultured skin fibroblasts from the right inguinal region at the age of 12 months revealed trisomy 4 (47,XY,+4) in 49 metaphases, trisomy 6 (47,XY,+6) in 2 metaphases, and a normal karyotype (46,XY) in 49 cells of the 100 analyzed metaphases, respectively. The main clinical findings consist of prenatal growth retardation, hypoplasia of the right side of the face, a dysplastic and posteriorly rotated right ear, a high vaulted palate, retrognathia, aplasia of the right thumb, hypoplasia of the fingernails, a deep sacral dimple, and patchy skin hypopigmentation of the right leg. When last seen at the age of 14 months, his development was nearly normal. Five patients with trisomy 4 mosaicism have been reported previously, but none with an additional trisomy 6 mosaicism. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Fluorescent in situ hybridization (FISH) with a 21q11-specific probe (CB21c1) consisting of three non-overlapping cosmids has been applied to interphase amniocytes of pregnancies at increased risk for fetal aneuploidy (N = 78) and to interphase lymphocytes, cultured and uncultured, of patients referred for Down syndrome (N = 19 and 28, respectively). In the uncultured amniocytes, six chromosome aberrations were detected: three cases of trisomy 21, a triploidy, a de novo 46,XX,t(21q21q), and a mosaic 46,XY/47,XY,+dic(21)(q11)/48,XY,+dic(21)(q11), +del(21)(q11). In 15 cultured and 20 uncultured blood samples, FISH correctly diagnosed trisomy 21 (full or mosaic) at the interphase level, which was confirmed in all cases by subsequent karyotyping. Because of specific and strong signals in interphase nuclei, CB21c1 appears to be a useful tool for the rapid detection of chromosome 21 abnormalities.  相似文献   

7.
A fetus was identified by prenatal cytogenetic diagnosis as having a karyotype 46,XY,r(13) (p11q13). Termination of the pregnancy yielded a severely malformed fetus. Fetal abnormalities included anencephaly, imperforate anus and urethral meatus, severe talipes, syndactyly, cardiac defects and other anomalies. Confirmatory studies on cultured placental villi cells indicated a second cell line, 46,XY, −13,+ 13qter→cen::13ql3→qter. This cell line was not detectable in cells derived from the fetus despite extensive studies. It seems likely that the two cell lines arose simultaneously with selection favouring the 46,XY,r(13) line. How the chromosome rearrangements may have arisen is discussed. We are unaware of other cases where a cell line identifiable by a chromosome abnormality appeared to be confined to placental tissue. However, studies on placental tissue may be helpful in understanding the origin of other unbalanced de novo rearrangements.  相似文献   

8.
Three cases of unusual chromosomal mosaicism are reported for which the cytogenetic data show inconsistent findings between CVS and AC or fetal tissue, and which cannot be explained simply by non-disjunction. For case 1, in CVS the karyotype was 46,XY, whereas lymphocytes and fibroblasts revealed 69,XXY. DNA fingerprinting indicated one paternal and two maternal chromosome sets, the latter most probably due to omission of maternal meiosis II. For case 2, in CVS mos 46,XX/47,XX,+mar de novo was observed. Amniotic fluid cells had the karyotype 46,XX. The origin of the marker chromosome might be explained by at least two events of unknown order (a somatic chromosome/chromatid deletion and non-disjunction of the homologous chromosome). In case 3 (CVS: mos 46,XY/46,XY,19q+ de novo; amniotic fluid cells, lymphocytes, and fibroblasts: 46,XY), the surplus of chromosome material in 19q+ might be explained on the basis of a somatic translocation. The idea of a chimera is less convincing, as the mosaic finding is restricted to one tissue. Furthermore, there was no hint of a vanishing twin. Hitherto, no case of structural chromosome mosaicism in CVS has been reconfirmed in fetal tissues.  相似文献   

9.
We report a 16-month-old boy with delayed psychomotor development, dysmorphic features, and failure to thrive. He had a mosaic karyotype detected prenatally: mos 46,XY/47,XY,+r(20)/47,XY,+20. After birth, the abnormal cell lines were confirmed in a number of tissues. The small ring chromosome was identified using fluorescence in situ hybridization as derived from chromosome 20. We compared our patient with previously reported cases of mosaic trisomy 20 detected prenatally and associated with an abnormal phenotype. In an attempt to characterize an r(20) syndrome, we also compared our case with two similar reports in the literature.  相似文献   

10.
A case of prenatally diagnosed non-mosaic trisomy 20 in cells cultured from a chorionic villus sample (CVS)is presented. The term placental karyotype was also non-mosaic trisomy 20. The karyotype of thenewborn was 46,XY/47,XY,+20 in foreskin cultures and in a second skin culture; blood lymphocyte culture was 46,XY. Aside from diffuse, hypopigmentary swirls along the lines of Blaschko observed on hisextremities and trunk, referred to as hypomelanosis of Ito, the patient is clinically normal at 8¾ years ofage. In addition, he is one of the oldest reported cases of mosaic trisomy 20 confirmed after birth forwhich the clinical outcome has been monitored. This case demonstrates that these trisomy 20 findings are compatible with normal psychomotor development and phenotype. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
An Erratum has been published for this article in Prenatal Diagnosis 22(11) 2002: 1056. We report a case of maternal isodisomy 10 combined with mosaic partial trisomy 10 (p12.31-q11.1). Chromosome examinations from a CVS sample showed a karyotype 47,XY,+mar/46,XY. The additional marker chromosome which was present in 6/25 interphase nuclei was shown by fluorescence in situ hybridization (FISH) to have been derived from a pericentromeric segment of chromosome 10. DNA analysis was performed from umbilical cord blood from the fetus after termination of the pregnancy at 18 weeks. The results showed that the two structurally normal chromosomes 10 were both of maternal origin, whereas the marker chromosome derived from the father. Autopsy of the fetus revealed hypoplasia of heart, liver, kidneys and suprarenal glands, but, apart from a right bifid ureter, no structural organ abnormalities. This fetus represents the second reported instance of a maternal uniparental disomy (UPD) 10. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Chorionic villus samples from a healthy pregnant female were obtained for first-trimester prenatal diagnosis. A translocation trisomy 21 was diagnosed. A consecutive amniocentesis revealed a normal male karyotype. At term a healthy boy was born. Cytogenetic analysis from cord blood showed a regular karyotype of 46,XY, whereas in term placenta a pathological karyotype of 47,XY,+mar was found.  相似文献   

13.
A 38-year-old lady, who had a previous infant with type 2 Gaucher disease, underwent prenatal diagnosis by chorionic villus sampling at 9 weeks' gestation. Results on the fresh villus revealed a 47,XY,+21 karyotype and a marked deficiency (2 per cent of control) of β-glucosidase activity. Following termination, villus material was cultured which initially revealed only a partial enzyme deficiency and a normal female karyotype, i.e., maternal cells. A subsequent culture contained 47,XY, + 21 cells which were deficient in β-glucosidase activity, thus confirming the diagnosis. The results in this interesting case illustrate the potential dangers of maternal cell contamination in cultured villus cells.  相似文献   

14.
Marker or ring X [r(X)] chromosomes of varying size are often found in patients with Turner syndrome. Patients with very small r(X) chromosomes that did not include the X-inactivation locus (XIST) have been described with a more severe phenotype. Small r(X) chromosomes are rare in males and there are only five previous reports of such cases. We report the identification of a small supernumerary X chromosome in an abnormal male fetus. Cytogenetic analysis from chorionic villus sampling was performed because of fetal nuchal translucency thickness and it showed mosaicism 46,XY/47,XY,+r(X)/48,XY,+r(X),+r(X). Fluorescence in situ hybridizations (FISH) showed the marker to be of X-chromosome origin and not to contain the XIST locus. Additional specific probes showed that the r(X) included a euchromatic region in proximal Xq. At 20 weeks gestation, a second ultrasound examination revealed cerebral abnormalities. After genetic counselling, the pregnancy was terminated. The fetus we describe is the first male with a mosaic XIST-negative r(X) chromosome identified at prenatal diagnosis. The phenotype we observed was probably the result of functional disomy of the genes in the r(X) chromosome, secondary to loss of the XIST locus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Two cases of mosaic trisomy 7 confined to the cultured cells and not found in direct preparation were detected from 200 consecutive first-trimester chorionic villus samples (CVS) analysed. The mosaicism was similar in the two cases, but the pregnancy outcome was different. In both cases, the direct metaphases from the CVS were 46, XY. Culture metaphases were mos46,XY/47,XY, + 7; the trisomy 7 was seen in 34 per cent of cells from case 1 and 53 per cent from case 2. A sonogram at 151/2 weeks revealed fetal death in utero in case 1, and the patient declined amniocentesis. The fetal tissue failed to grow in culture, but the placental cultured cells were 47,XY, + 7 in 28 (100 per cent) cells analysed. In the second case, all the amniotic fluid cells were 46,XY and the pregnancy resulted in a normal male with a 46,XY karyotype in the cord blood and foreskin fibroblast cultures. The term placenta was mosaic with 13/163 (8 per cent) trisomy 7 cells. Extensive cytogenetic studies on the placenta for the first time confirmed trisomy 7 mosaicism confined to the villus cultures.  相似文献   

16.
We present six cases of 47,+i(5p)/46 mosaicism diagnosed at chorionic villus sampling (CVS), this being the first prospective series to be reported. The clinical indication in each was advanced maternal age. Further prenatal studies in four (amniocentesis, plus fetal blood sampling in one) did not show the isochromosome. In one case, subsequent amniocentesis showed 1/48 in situ colonies with the isochromosome, but fetal blood was karyotypically normal. These five pregnancies resulted in phenotypically normal livebirths; further normal follow-up reports (from age 4 months through 4 years) are noted in four of these. Analysis of placental tissue in one case confirmed the presence of the i(5p) mosaicism. In the remaining case, in which 100% of CVS cultured cells had the i(5p), the pregnancy was terminated. Fetal skin fibroblasts did not show the i(5p). Thus, in none of these six cases was true fetal mosaicism detected, nor an abnormal phenotype noted. We suggest that a 47,+i(5p)/46 karyotype, detected at CVS, may frequently reflect confined placental mosaicism. In addition, we report a case of the primary diagnosis of 47,+i(5p)/46 mosaicism at amniocentesis. The infant appeared normal at birth, but a brain malformation was subsequently identified. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
We report on the prenatal diagnosis and ultrasonographic findings of a second-trimester fetus with jumping translocation involving chromosome 22. A 28-year-old gravida 2, partus 1, Turkish woman was referred for genetic counselling and ultrasonographic examination at 18 weeks' gestation because of a high risk of trisomy 21 in triple test. Prenatal ultrasonography showed tetralogy of Fallot with a diverticular dilatation of the pulmonary artery, flattened brow, complete absence of the right upper limb, hypospadias, oligodactyly (three digits) in left hand and in both feet, and hyperechogenic abdominal foci. Amniocentesis revealed a karyotype of 46,XY[4]/46,XY,−8,+ der(8),t(8;22)(q24.3;q11.21)[2]/45, XY,−22,−8,+ der(8)t(8;22)(q24.3;q11.21)[22]/45,XY,−22,−5,+ der(5)t(5;22)(q35.3;q11.21)[44]. A C-banding and FISH study with a specific centromeric probe (D14Z1/D22Z1) for chromosome 22 was made. In our case, partial monosomy for the regions 22q11.21→22pter, 8q24.3→8qter and 5q35.3→5qter may partially explain the fetal malformations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Prenatal specimens were received from a fetus with abnormalities noted on ultrasound. A supernumerary marker chromosome (SMC) was detected: 47,XY,+mar. Fluorescence in situ hybridisation (FISH) further classified this to be partial tetrasomy for chromosome 14. We compare this finding with other cases of SMC (14) and further classify phenotype with karyotype. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
This paper reports a case of chromosomal mosaicism for trisomy 5 recovered from amniotic fluid cells and from skin fibroblasts of a liveborn dysmorphic male. Routine amniocentesis was performed at 16 weeks' gestation because of parental concern. Trisomy 5 cells were measured from 25 per cent of amniocytes from two culture vessels. No further invasive testing was performed until 32 weeks' gestation, at which time ultrasound examination showed fetus with intrauterine growth retardation. Fetal blood sampling was then performed, with only karyotypically normal cells recovered. At birth, the child was found to have multiple dysmorphic features and congenital anomalies, including an eventration of the diaphragm and ventricular septal defect, both of which required surgical correction. Chromosomal analysis of cord blood lymphocytes indicated 46,XY; however, 20 per cent of the cultured fibroblasts obtained from the chest skin at the incision site for diaphragmatic repair had a 47,XY,+5 karyotype. Trisomy 5 mosaicism may be another example of tissue-limited mosaicism. Fetal blood sampling can then be falsely reassuring. Furthermore, because some cell lines rarely appear in lymphocyte populations, cytogenetic analysis of multiple tissues warranted as part of the evaluation of individuals with developmental delay and dysmorphic features.  相似文献   

20.
Trisomy 12 observed in chorionic villus sampling (CVS) may reflect generalized mosaicism or indicate mosaicism confined to only the placenta. In this report, four cases of trisomy 12 observed in CVS or cultured placental biopsies with varying outcomes are presented. Seven dinucleotide repeat polymorphisms for chromosome 12 were used to determine the chromosome 12 origins in the fetus or child and to delineate the mechanism(s) that gave rise to the trisomy. In two cases (cases A and C), the mosaicism was confined to the placenta, resulting in normal liveborns. Although, in one case, the molecular results suggested an apparent duplication of one paternal chromosome 12 in the placenta, normal biparental inheritance was found in the diploid fetal cell line in both cases. In two other cases (cases B and D), trisomy 12 was observed in both extraembryonic and fetal tissues. In one of these pregnancies, a child was born by Caesarean section at 37 weeks because of intrauterine growth retardation and oligohydramnios, and resulted in neonatal death. Molecular markers and fluorescence in situ hybridization (FISH) revealed low-level trisomy 12 mosaicism in the spleen. In the fourth case, fetal abnormalities were detected on ultrasound and low-level trisomy 12 mosaicism was observed in amniotic fluid cells using conventional cytogenetics and FISH. Molecular markers revealed a maternal meiosis I non-disjunction of chromosome 12 in DNA from a cultured placental biopsy. Although predicting the outcomes of pregnancies involving confined placental mosaicism remains difficult, molecular techniques are valuable tools for distinguishing uniparental from biparental disomy and mechanisms of mosaicism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号