首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mathematical models may provide a means to estimate phosphorus (P) losses from land application of manure. Phosphorus losses typically occur during brief episodes of runoff and erosion. Models must be able to simulate P losses during these episodes by representing the basic chemical, physical, and biological processes by which these losses occur. The mathematical model ecosys combines dynamic distributed flow of solutes and nonsolutes through runoff and erosion with convective-dispersive transport of solutes, and both biologically and thermodynamically driven transformations between solutes and nonsolutes. This model was tested against P lost in runoff, erosion, and leachate measured during 90 min of controlled rainfall at 65 mm h(-1) on soils from six sites at which different rates of manure had been applied over the previous 3 to 6 yr. Transport and transformation kinetics in the model enabled it to simulate changes of dissolved inorganic phosphorus (DIP) in runoff from >1.0 to <0.05 mg L(-1) and changes of total phosphorus (TP) in sediment from 15 to 3 mg L(-1) measured during controlled rainfall on soils with diverse P contents. Results from 60-yr model runs using these kinetics with different application rates of cattle manure indicated that (i) a positive interaction exists between annual rainfall and application rate on P losses and (ii) rates greater than 30 Mg ha(-1) yr(-1) would cause TP concentrations in water leaving the site to rise above acceptable limits. The interaction between rainfall and rate suggests that P losses from manure application at any site should be assessed under the upper range of likely rainfall intensities.  相似文献   

2.
Soils under intensive livestock farming and heavily fertilized with animal manure may have elevated soil phosphorus (P) contents. We determined P desorption kinetics in batch experiments using soils from a pot experiment where grass was cropped on a P-rich noncalcareous sandy soil without P addition, to lower the soil P content. A diffusion model was used to describe P desorption kinetics from a spherical aggregate. The model was calibrated with data from the batch experiments. Simulation results show that in the pot experiment, P desorption from the solid phase of the inner layers was initially far from equilibrium with the rest of the aggregate, but desorption came closer to equilibrium as the soil P content decreased further. A simple tool is presented, referred to as the dynamic bioavailability index (DBI), to determine whether kinetics of P desorption limits plant uptake. This tool is the dimensionless ratio of the modeled maximal diffusive flux from soil aggregates to solution and the plant uptake rate measured in the pot experiment. The DBI was initially much larger than one; the maximal possible P desorption rate exceeded the uptake rate, so uptake was not limited by desorption. The DBI stabilized at a value somewhat larger than one after a while, due to soil transport limitations. This decrease coincided with a large decrease of the P content in the grass to a value (far) below what is considered as optimal; the supply rate of P from soil to the root cannot meet the demand needed for optimal P uptake. The DBI could be seen as a promising onset to a new dynamic approach of bioavailability.  相似文献   

3.
Predicting dissolved phosphorus in runoff from manured field plots   总被引:2,自引:0,他引:2  
Dissolved inorganic P transport in runoff from agricultural soils is an environmental concern. Models are used to predict P transport but rarely simulate P in runoff from surface-applied manures. Using field-plot data, we tested a previously proposed model to predict manure P in runoff. We updated the model to include more data relating water to manure ratio to manure P released during water extractions. We verified that this update can predict P release from manure to rain using published data. We tested the updated model using field-plot and soil-box data from three manure runoff studies. The model accurately predicted runoff P for boxes, but underpredicted runoff P for plots. Underpredictions were caused by runoff to rain ratios used to distribute P into runoff or infiltration. We developed P distribution fractions from manure water extraction data to replace runoff to rain ratios. Calculating P distribution fractions requires knowing rainfall rate and times that runoff begins and rain stops. Using P distribution fractions gave accurate predictions of runoff P for soil boxes and field plots. We observed relationships between measured runoff to rain ratios and both P distribution fractions and a degree of error in original predictions, calculated as (measured runoff P/predicted runoff P). Using independent field-plot data, we verified that original underpredictions of manure runoff P can be improved by calculating P distribution fractions from measured runoff to rain ratios or adjusting runoff to rain ratios based on their degree of error. Future work should test the model at field or watershed scales and at longer time scales.  相似文献   

4.
Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.  相似文献   

5.
Computer models are a rapid, inexpensive way to identify agricultural areas with a high potential for P loss, but most models poorly simulate dissolved P release from surface-applied manures to runoff. We developed a simple approach to predict dissolved P release from manures based on observed trends in laboratory extraction of P in dairy, poultry, and swine manures with water over different water to manure ratios. The approach predicted well dissolved inorganic (R2 = 0.70) and organic (R2 = 0.73) P release from manures and composts for data from leaching experiments with simulated rainfall. However, it predicted poorly (R2 = 0.18) dissolved inorganic P concentrations in runoff from soil boxes where dairy, poultry, and swine manures had been surface-applied and subjected to simulated rainfall. Multiplying predicted runoff P concentrations by the ratio of runoff to rainfall improved the relationship between measured and predicted runoff P concentrations, but runoff P was still overpredicted for dairy and swine manures. We attributed this overprediction to immediate infiltration of dissolved P in the freely draining water of dairy and swine manure slurries upon their application to soils. Further multiplying predicted runoff dissolved inorganic P concentrations by 0.35 for dairy and 0.60 for swine manures resulted in an accurate prediction of dissolved P in runoff (R2 = 0.71). The ability of our relatively simple approach to predict dissolved inorganic P concentrations in runoff from surface-applied manures indicates its potential to improve water quality models, but field testing of the approach is necessary first.  相似文献   

6.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

7.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.  相似文献   

8.
Though runoff from manure spread fields is recognized as an important mode of nonpoint-source pollution, there are no models that mechanistically describe transport from a field-spread manure-type source. A mechanistic, physically based model for pollutant release from a surface source, such as field-spread manure, was hypothesized, laboratory tested, and field-applied. The primary objective of this study was to demonstrate the potential applicability of a mechanistic model to pollutant release from surface sources. The laboratory investigation used stable sources and a conservative "pollutant" (KCl) so that the dynamic effects of source dissolution and chemical transformations could be ignored and transport processes isolated. The field investigation used runoff and soluble reactive phosphorus (SP) data collected from a dairy-manure-spread field in the Cannonsville watershed in the Catskills region of New York State. The model predictions corroborated well with observations of runoff and pollutant delivery in both the laboratory and the field. "Pollutant" release from surface sources was generally predicted within 11% of laboratory KCl measurements and field SP observations. Laboratory flume runoff predictions with 15 and 26% errors for 25 and 15 mm h(-1) simulated rainfall intensity experiments, respectively, represented root mean square errors of less than 0.2 mLs(-1). A 26% error was calculated for overland flow predictions in the field, which translated into approximately a 39 mLs(-1) error. Results suggest that the hypothesized model satisfactorily represents the primary mechanisms in pollutant release from surface sources.  相似文献   

9.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

10.
Sulfadimethoxine is a widely used sulfonamide veterinary antibiotic and could be a source of agricultural contamination. Therefore, information is needed about its degradation kinetics in manure under aerobic conditions. Based on the analysis of first-order kinetics and the assumption that sulfadimethoxine availability for degradation in manure could be limiting, a new kinetic model was developed and was found to fit the degradation kinetics well. The degradation rate in sterile manure was found to be much lower than in nonsterile manure, indicating that biodegradation was significant. In biologically active manure, the degradation rate constant decreased with increasing initial concentration of sulfadimethoxine, implying that the activity of the degrading microorganisms was inhibited. Increasing moisture or temperature was found to increase sulfadimethoxine degradation in manure. Mixing manure containing high levels of sulfadimethoxine with manure containing lower levels may result in more rapid degradation, thus greatly diminishing sulfadimethoxine contamination in manure and significantly reducing sulfadimethoxine inputs into the environment. During treatment, keeping the manure moist and storing in a moderately warm place under aerobic conditions may also help to diminish sulfadimethoxine contamination.  相似文献   

11.
Modeling diffuse phosphorus (P) loss may indicate management strategies to minimize P loss from agricultural sources. An empirical model predicting flow-weighted phosphorus concentrations (MRP) was derived using data collected from 35 Irish river catchments. Monitoring records of riverine P and stream flow data were used to calculate MRP values averaged for the years 1991-1994. These data were modeled using land use, soil type, and soil P data. Soil type in catchments was described using soil survey classifications weighted according to their P desorption properties from laboratory results. Soil test P concentrations for the studied watersheds were obtained from a national database. Soil P levels were weighted based on the results of field experiments measuring P losses in overland flow from fields at different soil test P levels. The 35 catchments were statistically clustered into two populations (A and B) based on differences in soil type, specifically, soil hydrology. Catchments in Cluster A had predominantly poorly drained soils and comparatively higher MRP concentrations (0.03-0.17 mg L(-1)) than Cluster B areas (0.01-0.7 mg L(-1)) with mostly well-drained soils. Regression equations derived for A and B type catchments predicted MRP values with 68 and 62% of the variation explained in the models, respectively. Data extracted for the rest of the country were applied to the models to delineate areas at risk on a national scale. While the models were only moderately accurate they highlighted the influence of land management, specifically, high production grassland receiving high P inputs, in conjunction with the effect of soil type and soil hydrology on the transport of P to surface waters.  相似文献   

12.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

13.
ABSTRACT: Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm?3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.  相似文献   

14.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

15.
Sediments have a significant influence on the overlying water, and phosphorus (P) release from sediments is an important source for the lake eutrophication, particularly in shallow ones. In this study, effects of organic matter on P release from sediments in different trophic lakes from the middle and lower reaches of Yangtze River, China, were investigated, and the release kinetics of different P fractions at different temperature were studied. The results show that the release kinetics of soluble reactive phosphorus (SRP), dissolved organic phosphorus (DOP) and dissolved total phosphorus (DTP) were similar for the studied sediments, the release rate increased rapidly in the initial hours, and it increased gradually after 10h. The release kinetics of SRP, DOP and DTP followed the Power Function model. SRP was the major fraction among the released DTP, while DOP was an important fraction in the heavily polluted sediments. Organic matter restricted the SRP and DTP release while it promoted the DOP release. Both DOP and SRP release processes were endothermic. The thermodynamic properties in the P release kinetics were calculated and discussed.  相似文献   

16.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

17.
Reducing the delivery of phosphorus (P) from land-applied manure to surface water is a priority in many watersheds. Manure application rate can be controlled to manage the risk of water quality degradation. The objective of this study was to evaluate how application rate of liquid swine manure affects the transport of sediment and P in runoff. Liquid swine manure was land-applied and incorporated annually in the fall to runoff plots near Morris, Minnesota. Manure application rates were 0, 0.5, 1, and 2 times the rate recommended to supply P for a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Runoff volume, sediment, and P transport from snowmelt and rainfall were monitored for 3 yr. When manure was applied at the highest rate, runoff volume and sediment loss were less than the control plots without manure. Reductions in runoff volume and soil loss were not observed for spring runoff when frozen soil conditions controlled infiltration rates. The reduced runoff and sediment loss from manure amended soils compensated for addition of P, resulting in similar runoff losses of total P among manure application rates. However, losses of dissolved P increased with increasing manure application rate for runoff during the spring thaw period. Evaluation of water quality risks from fall-applied manure should contrast the potential P losses in snowmelt runoff with the potential that incorporated manure may reduce runoff and soil loss during the summer.  相似文献   

18.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

19.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa) manure has been implicated in eutrophication. Dietary modification and manure amendments have been identified as best management practices to reduce P runoff from manure. This study was conducted to compare the effects of dietary modification and aluminum chloride (AlCl3) manure amendments on reducing P in swine manure and runoff. Twenty-four pens of nursery swine were fed either a normal diet or a phytase-amended diet. Each pen was connected to a separate manure pit, which was treated with AlCl3 to give final concentrations in the liquid manure of 0 (control), 0.25, 0.50, or 0.75% (v/v). Manure was collected and applied to plots cropped with tall fescue (Festuca arundinacea Schreb.), and simulated rainfall was applied at 50 mm h(-1), sufficient to generate a minimum of 30 min of continuous runoff. Samples of manure and runoff were analyzed for P and Al concentrations. Phytase reduced manure soluble reactive phosphorus (SRP) by 17%, while AlCl3 reduced manure SRP by as much as 73% compared with normal manure. Phosphorus runoff was reduced from 5.7 to 2.6 mg P L(-1) (a 53% reduction) using AlCl3. The mean SRP concentration in runoff from phytase diets without AlCl3 was 7.1 mg P L(-1) during the first rainfall simulation. When phytase and AlCl3 were used together, both manure SRP and P runoff were reduced more than if either treatment were used without the benefit of the other. Use of AlCl3 did not increase soluble Al in manure or Al lost in runoff. Results from this study indicate that producers should use dietary manipulation with phytase and AlCl3 manure amendments to reduce potential P losses from fields fertilized with swine manure.  相似文献   

20.
Growing interest in corn (Zea mays L.) silage utilization on Wisconsin dairy farms may have implications for nutrient losses from agricultural lands. Increasing the silage cutting height will increase residue cover and could reduce off-site migration of sediments and associated constituents compared with conventional silage harvesting. We examined the effects of residue level and manure application timing on phosphorus (P) losses in runoff from no-till corn. Treatments included conventional corn grain (G) and silage (SL; 10- to 15-cm cutting height) and nonconventional, high-cut (60-65 cm) silage (SH) subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm h(-1); 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots was collected, and subsamples were analyzed for dissolved reactive phosphorus (DRP), total phosphorus (TP), and P mass distribution in four particle size classes. Total P and DRP loads were inversely related to percent residue cover, but both TP and DRP concentrations were unaffected by residue level. Manure application increased DRP concentrations in spring runoff by two to five times but did not significantly affect DRP loads, since higher concentrations were offset by lower runoff volumes. Spring manure application reduced TP loads in spring runoff by 77 to 90% compared with plots receiving no manure, with the extent of reductions being greatest at the lower residue levels (<24%). The TP concentration in sediments increased as particle size decreased. Manure application increased the TP concentration of the 0- to 2-microm fraction by 79 to 125%, but elevated the 2- to 10- and 10- to 50-microm fractions to a lesser extent. Recent manure additions were most influential in enriching transported sediments with P. By itself, higher residue cover achieved by high-cutting silage was often insufficient to lower P losses; however, the combination of manure application and higher residue levels significantly reduced P losses from corn fields harvested for silage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号