首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) loss during beef cattle (Bos taurus) feedlot manure composting may contribute to greenhouse gas emissions and increase ammonia (NH(3)) in the atmosphere while decreasing the fertilizer value of the final compost. Phosphogypsum (PG) is an acidic by-product of phosphorus (P) fertilizer manufacture and large stockpiles currently exist in Alberta. This experiment examined co-composting of PG (at rates of 0, 40, 70, and 140 kg PG Mg(-1) manure plus PG dry weight) with manure from feedlot pens bedded with straw or wood chips. During the 99-d composting period, PG addition reduced total nitrogen (TN) loss by 0.11% for each 1 kg Mg(-1) increment in PG rate. Available N at the end of composting was significantly higher for wood chip-bedded (2180 mg kg(-1)) than straw-bedded manure treatments (1820 mg kg(-1)). Total sulfur (TS) concentration in the final compost increased by 0.19 g kg(-1) for each 1 kg Mg(-1) increment in PG rate from 5.2 g TS kg(-1) without PG addition. Phosphogypsum (1.6 g kg(-1) P) addition had no significant effect on total phosphorus (TP) concentration of the final composts. Results from this study demonstrate the potential of PG addition to reduce overall N losses during composting. The accompanying increase in TS content has implications for use of the end-product on sulfur-deficient soils. Co-composting feedlot manure with PG may provide an inexpensive and technologically straightforward solution for managing and improving the nutrient composition of composted cattle manure.  相似文献   

2.
Carbon and N losses reduce the agronomic value of compost and contribute to greenhouse gas (GHG) emissions. This study investigated GHG emissions during composting of straw-bedded manure (SBM) and wood chip-bedded manure (WBM). For SBM, dry matter (DM) loss was 301 kg Mg(-1), total carbon (TC) loss was 174 kg Mg(-1), and total nitrogen (TN) loss was 8.3 kg Mg(-1). These correspond to 30.1% of initial DM, 52.8% of initial TC, and 41.6% of initial TN. For WBM, DM loss was 268 kg Mg(-1), TC loss was 154 kg Mg(-1), and TN loss was 1.40 kg Mg(-1), corresponding to 26.5, 34.5, and 11.8% of initial amounts. Most C was lost as CO2 with CH4 accounting for <6%. However, the net contribution to greenhouse gas emissions was greater for CH4 since it is 21 times more effective at trapping heat than CO2. Nitrous oxide (N2O) emissions were 0.077 kg N Mg(-1) for SBM and 0.084 kg N Mg(-1) for WBM, accounting for 1 to 6% of total N loss. Total GHG emissions as CO2-C equivalent were not significantly different between SBM (368.4 +/- 18.5 kg Mg(-1)) and WBM (349.2 +/- 24.3 kg Mg(-1)). However, emission of 368.4 kg C Mg(-1) (CO2-C equivalent) was greater than the initial TC content (330.5 kg Mg(-1)) of SBM, raising the question of the net benefits of composting on C sequestration. Further study is needed to evaluate the impact of composting on overall GHG emissions and C sequestration and to fully investigate livestock manure management options.  相似文献   

3.
Greenhouse gas emissions during cattle feedlot manure composting   总被引:11,自引:0,他引:11  
The emission of greenhouse gases (GHG) during feedlot manure composting reduces the agronomic value of the final compost and increases the greenhouse effect. A study was conducted to determine whether GHG emissions are affected by composting method. Feedlot cattle manure was composted with two aeration methods--passive (no turning) and active (turned six times). Carbon lost in the forms of CO2 and CH4 was 73.8 and 6.3 kg C Mg-1 manure for the passive aeration treatment and 168.0 and 8.1 kg C Mg-1 manure for the active treatment. The N loss in the form of N2O was 0.11 and 0.19 kg N Mg-1 manure for the passive and active treatments. Fuel consumption to turn and maintain the windrow added a further 4.4 kg C Mg-1 manure for the active aeration treatment. Since CH4 and N2O are 21 and 310 times more harmful than CO2 in their global warming effect, the total GHG emission expressed as CO2-C equivalent was 240.2 and 401.4 kg C Mg-1 manure for passive and active aeration. The lower emission associated with the passive treatment was mainly due to the incomplete decomposition of manure and a lower gas diffusion rate. In addition, turning affected N transformation and transport in the window profile, which contributed to higher N2O emissions for the active aeration treatment. Gas diffusion is an important factor controlling GHG emissions. Higher GHG concentrations in compost windrows do not necessarily mean higher production or emission rates.  相似文献   

4.
Greenhouse gas balance for composting operations   总被引:1,自引:0,他引:1  
The greenhouse gas (GHG) impact of composting a range of potential feedstocks was evaluated through a review of the existing literature with a focus on methane (CH(4)) avoidance by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH(4) avoidance when feedstocks are composted instead of landfilled (municipal solid waste and biosolids) or lagooned (animal manures). Methane generation potential is given based on total volatile solids, expected volatile solids destruction, and CH(4) generation from lab and field incubations. For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve the equivalent of 3.1 Mg CO(2) per 1 dry Mg of feedstocks composted if feedstocks were diverted from anaerobic storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG emissions from the use of electricity and fossil fuels and through GHG emissions during composting. Greenhouse gas emissions during composting are highest for high-nitrogen materials with high moisture contents. These debits are minimal in comparison to avoidance credits and can be further minimized through the use of higher carbon:nitrogen feedstock mixtures and lower-moisture-content mixtures. Compost end use has the potential to generate carbon credits through avoidance and sequestration of carbon; however, these are highly project specific and need to be quantified on an individual project basis.  相似文献   

5.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

6.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

7.
The fate of manure nutrients in beef cattle (Bos taurus) feedlots is influenced by handling treatment, yet few data are available in western Canada comparing traditional practices (fresh handling, stockpiling) with newer ones (composting). This study examined the influence of handling treatment (fresh, stockpiled, or composted) on nutrient levels and mass balance estimates of feedlot manure at Lethbridge, Alberta, and Brandon, Manitoba. Total carbon (TC) concentration of compost (161 kg Mg(-1)) was lower (P < 0.001) than stockpiled (248 kg Mg(-1)), which was in turn lower (P < 0.001) than fresh manure (314 kg Mg(-1)). Total nitrogen (TN) concentration was not affected by handling treatment while total phosphorus (TP) concentration increased with composting at Lethbridge. The percent inorganic nitrogen (PIN) was lower (P < 0.01) for compost (5.1%) than both fresh (24.7%) and stockpiled (28.9%) manure. Composting led to higher (P < 0.05) dry matter (DM) losses (39.8%) compared to stockpiling (22.5%) and higher (P < 0.05) total mass (water + DM) losses (65.6 vs. 35.2%). Carbon (C) losses were higher (P < 0.01) with composting (66.9% of initial) than with stockpiling (37.5%), as were nitrogen (N) losses (46.3 vs. 22.5%, P < 0.05). Composting allowed transport of two times as much P as fresh manure and 1.4 times as much P as stockpiled manure (P < 0.001) on an "as is" basis. Our study looked at one aspect of manure management (i.e., handling treatment effects on nutrient concentrations and mass balance estimates) and, as such, should be viewed as one component in the larger context of a life cycle assessment.  相似文献   

8.
The link between livestock production, manure management, and human health has received much public attention in recent years. Composting is often promoted as a means of sanitizing manure to ensure that pathogenic bacteria are not spread to a wider environment during land application. In a two-year study (1998 and 1999) in southern Alberta, we examined the fate of coliform bacteria during windrow composting of cattle (Bos taurus) manure from feedlot pens bedded with cereal straw or wood chips. Numbers of total coliforms (TC) and Escherichia coli declined as the composting period progressed. In 1998, TC levels (mean of both bedding types) were log10 7.86 cells g(-1) dry wt. for raw manure on Day 0, log10 3.38 cells g(-1) by Day 7, and log10 1.69 cells g(-1) by Day 14. More than 99.9% of TC and E. coli was eliminated in the first 7 d when average windrow temperatures ranged from 33.5 to 41.5 degrees C. The type of bedding did not influence the numbers of TC or E. coli. Dessication probably played a minor role in coliform elimination, since water loss was low (< 0.07 kg kg(-1)) in the first 7 d of composting. However, total aerobic heterotroph populations remained high (> 7.0 log10 CFU g(-1) dry wt., where CFU is colony forming units) throughout the composting period, possibly causing an antagonistic effect. Land application of compost, with its nondetectable levels of E. coli compared with raw manure, should minimize environmental risk in areas of intensive livestock production.  相似文献   

9.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

10.
Composting is the controlled biological decomposition of organic matter by microorganisms during predominantly aerobic conditions. It is being increasingly adopted due to its benefits in nutrient recycling, soil reclamation, and urban land use. However, it poses an environmental concern related to its contribution to greenhouse gas production. During composting, activities of methanogenic and methanotrophic communities influence the net methane (CH4) release into the atmosphere. Using quantitative polymerase chain reaction (qPCR), this study was aimed at assessing the changes in the methyl-coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) copy numbers for estimation of methanogenic and methanotrophic communities, respectively. Open-windrow composting of beef cattle (Bos Taurus L.) manure with temperatures reaching > 55 degrees C was effective indegrading commensal Escherichia coli within the first week. Quantification of community DNA revealed significant differences in mcrA and pmoA copy numbers between top and middle sections. Consistent mcrA copy numbers (7.07 to 8.69 log copy number g(-1)) were detected throughout the 15-wk composting period. However, pmoA copy number varied significantly over time, with higher values during Week 0 and 1 (6.31 and 5.41 log copy number g(-1), respectively) and the lowest at Week 11 (1.6 log copy number g(-1)). Net surface CH4 emissions over the 15-wk period were correlated with higher mcrA copy number. Higher net ratio of mrA: pmoA copy numbers was observed when surface CH4 flux was high. Our results indicate that mcrA and pmoA copy numbers vary during composting and that methanogen and methanotroph populations need to be examined in conjunction with net CH4 emissions from open-windrow composting of cattle feedlot manure.  相似文献   

11.
With a growing world population and global warming, we are challenged to increase food production while reducing greenhouse gas (GHG) emissions. We studied the effects of biochar (BC) and hydrochar (HC) produced via pyrolysis or hydrothermal carbonization, respectively, on GHG fluxes in three laboratory incubation studies. In the first experiment, ryegrass was grown in sandy loam mixed with equal amounts of a nitrogen-rich peanut hull BC, compost, BC+compost, double compost, or no addition (control); wetting-drying cycles and N fertilization were applied. Biochar with or without compost significantly reduced NO emissions and did not change the CH uptake, whereas ryegrass yield was significantly increased. In the second experiment, 0% (control) or 8% (w/w) of BC (peanut hull, maize, wood chip, or charcoal) or 8% HC (beet chips or bark) was mixed into a soil and incubated at 65% water-holding capacity (WHC) for 140 d. Treatments included simulated plowing and N fertilization. All BCs reduced NO emissions by ~60%. Hydrochars reduced NO emissions only initially but significantly increased them after N fertilization to 302% (HC-beet) and 155% (HC-bark) of the control emissions, respectively. Large HC-associated CO emissions suggested that microbial activity was stimulated and that HC was less stable than BC. In the third experiment, nutrient-rich peanut hull BC addition and incubation over 1.5 yr at high WHCs did not promote NO emissions. However, NO emissions were significantly increased with BC after NHNO addition. In conclusion, BC reduced NO emissions and improved the GHG-to-yield ratio under field-relevant conditions. However, the risk of increased NO emissions with HC addition must be carefully evaluated.  相似文献   

12.
Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.  相似文献   

13.
Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer.  相似文献   

14.
Manure composting has gained increased acceptance by the beef cattle (Bos taurus) feedlot industry in southern Alberta, Canada. Unlike fresh manure, compost is often promoted as being "weed-free." Studies were conducted with five weed species in 1997 and thirteen in 1999 to examine the effect of feedlot manure composting on weed seed viability. Weed seeds were buried in open-air compost windrows and recovered at various times during the thermophilic phase of composting. Windrow temperature and water contents were also measured. Germinability was zero for all composted weed seeds at all sampling times in 1997. However, some seeds remained viable (positive tetrazolium test denoting respiration) on Day 70. In 1999, only one of the thirteen species retained germinability on Day 21 and only two species had respiring seeds on Day 42. Time-viability relationships during composting were defined by exponential decay models. Lethal temperatures to eliminate viability was species-dependent. In 1999, four weed species were killed in the initial 7 d of composting at a lethal temperature of 39 degrees C while temperatures of > 60 degrees C were required for two species. Regression analysis on weed seed viability versus windrow temperature resulted in significant R2 values, which showed that only 17 to 29% of the variation in viability was accounted for by temperature. The lack of definitive relationships between temperature and weed seed viability demonstrated that factors other than temperature may play a role in eliminating weed seeds during composting.  相似文献   

15.
进行猪粪和奶牛粪自然高温堆肥发酵,分别在15、25、35、50 d取样,获得了不同腐熟程度堆肥产物,分别进行了小白菜和香瓜种子发芽与田间应用试验,以期获得不同腐熟堆肥在蔬菜上施用的农学效应,旨在从堆肥农田施用的农学效应角度,为制订堆肥腐熟度标准提供科学依据。结果表明:牛粪堆肥过程中的最高温度高于猪粪,且高温期也长于猪粪;两种处理在35d有机碳含量均显著降低,全氮含量为先降低后升高趋势;两种堆肥在35d后,均达到无害化标准。不同腐熟程度堆肥对小白菜株高和主根长及香瓜苗重和主根长均没有明显抑制作用,对小白菜和香瓜出苗率、根系活力及小白菜单株鲜重和生物产量影响较大,尤其是猪粪腐熟25d,奶牛粪腐熟15d的堆肥表现出显著抑制作用。将堆肥理化参数与小白菜、香瓜生长指标进行相关分析表明:pH值、全氮含量和C/N这3种指标均与小白菜和香瓜各项生物性状无显著相关性;有机碳和DOC与各项生物性状指标均表现出显著或极显著相关性;铵/硝与小白菜和香瓜的GI和根系活力均表现极显著或显著的相关性,其结果与现行的堆肥腐熟度指标并不一致。因此,在制订堆肥腐熟度标准时,应关注堆肥产物农田施用后不同作物所表现出的不同农学效应。  相似文献   

16.
Antibiotic degradation during manure composting   总被引:9,自引:0,他引:9  
On-farm manure management practices, such as composting, may provide a practical and economical option for reducing antibiotic concentrations in manure before land application, thereby minimizing the potential for environmental contamination. The objective of this study was to quantify degradation of chlortetracycline, monensin, sulfamethazine, and tylosin in spiked turkey (Meleagris gallopavo) litter during composting. Three manure composting treatments were evaluated: a control treatment (manure pile with no disturbance or adjustments after initial mixing), a managed compost pile (weekly mixing and moisture content adjustments), and vessel composting. Despite significant differences in temperature, mass, and nutrient losses between the composting treatments and the control, there was no difference in antibiotic degradation among the treatments. Chlortetracycline concentrations declined rapidly during composting, whereas monensin and tylosin concentrations declined gradually in all three treatments. There was no degradation of sulfamethazine in any of treatments. At the conclusion of the composting period (22-35 d), there was >99% reduction in chlortetracycline, whereas monensin and tylosin reduction ranged from 54 to 76% in all three treatments. Assuming first-order decay, the half-lives for chlortetracycline, monensin, and tylosin were 1, 17, and 19 d, respectively. These data suggest that managed compositing in a manure pile or in a vessel is not better than the control treatment in degrading certain antibiotics in manure. Therefore, low-level manure management, such as stockpiling, after an initial adjustment of water content may be a practical and economical option for livestock producers in reducing antibiotic levels in manure before land application.  相似文献   

17.
Phosphorus in runoff from fields where poultry litter is surface-applied is an environmental concern. We investigated the effect of adding phytase and reducing supplemental P in poultry diets and composting poultry manures, with and without Fe and Al amendments, on P in manures, composts, and runoff. We used four diets: normal (no phytase) with 0.4% supplemental P, normal + phytase, phytase + 0.3% P, and phytase + 0.2% P. Adding phytase and decreasing supplemental P in diets reduced total P but increased water-extractable P in manure. Compared with manures, composting reduced both total P, due to dilution of manure with woodchips and straw, and water-extractable P, but beyond a dilution effect so that the ratio of water-extractable P to total P was less in compost than manure. Adding Fe and Al during composting did not consistently change total P or water-extractable P. Manures and composts were surface-applied to soil boxes at a rate of 50 kg total P ha(-1) and subjected to simulated rainfall, with runoff collected for 30 min. For manures, phytase and decreased P in diets had no significant effect on total P or molybdate-reactive P loads (kg ha(-1)) in runoff. Composting reduced total P and molybdate-reactive P loads in runoff, and adding Fe and Al to compost reduced total P but not molybdate-reactive P loads in runoff. Molybdate-reactive P in runoff (mg box(-1)) was well correlated to water-extractable P applied to boxes (mg box(-1)) in manures and composts. Therefore, the final environmental impact of dietary phytase will depend on the management of poultry diets, manure, and farm-scale P balances.  相似文献   

18.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter.  相似文献   

19.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   

20.
Gaseous emissions from animal manure storage facilities can contribute to global greenhouse gas inventories. Biogas fluxes were measured for one year from a 2-ha anaerobic lagoon that received waste from a 10500-head swine (Sus scrofa) finishing operation in southwestern Kansas. During 2001, ebullition of biogas was measured continuously by using floating platforms equipped with gas-collection domes. Periodically, the composition of the biogas was determined by using gas chromatography. Detailed records of feed quality and quantity and animal weights and gains also were obtained to determine the carbon budget of the facility (barns and lagoon). Flux of biogas was very seasonal, with peak emission (18.7 mol m(-2) d(-1)) occurring in early June. Nearly 50% of the annual biogas losses occurred during a 30-d period beginning on day of year (DOY) 146. Flux patterns suggest that the start of the high biogas production period was governed by temperature, while the decline in production in mid-June was caused by substrate limitations. Average biogas composition was 0.71 L CH4 L(-1). The quantity of CH4 released from the lagoon was 86.3 Mg yr(-1), which represents about 38 g of CH4 per kg of animal weight gain. The average flux density of biogas from the lagoon was 382 mol m(-2) yr(-1) or 728 mol yr(-1) per resident animal where the resident animal population was 10500. Flux rates of CH4 were 1.7 to 3.4 times less than predictions made with Intergovernmental Panel on Climate Change (IPCC) models. Additional research is needed on the carbon budgets of other animal feeding operations so that better estimates of greenhouse gas emissions can be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号