首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
北京城区臭氧日变化特征及与前体物的相关性分析   总被引:17,自引:0,他引:17  
对2012年12月至2013年11月北京城区12个自动空气监测子站的臭氧及其前体物的浓度进行了分析,探讨北京城区臭氧浓度的日变化特征以及与前体物的关系.研究发现,北京市城区臭氧在5~8月份维持相对较高浓度,其他月份则较低.臭氧浓度呈现单峰型分布,基本在15:00、16:00达到峰值;同时臭氧呈现较明显的“周末效应”,即周末臭氧浓度高于工作日浓度. CO、NO、NO2和NOx等前体物多呈现双峰型分布,与O3均呈显著的负相关性,相关性在夏季较低.通过大气氧化剂OX和NOx的拟合方程发现,冬季北京市城区OX在白天受区域O3影响相对较大,在夜间受局地NOx污染影响相对较大.计算了在理想情况下的城区NO2光解速率,春季、夏季、秋季和冬季的平均值分别为0.180,0.209,0.169,0.149min-1.在白天臭氧的高浓度时段城区O3、NO和NO2体现出近似光化学平衡态的特征.  相似文献   

2.
2014年北京市城区臭氧超标日浓度特征及与气象条件的关系   总被引:11,自引:1,他引:10  
程念亮  李云婷  张大伟  陈添  王欣  郇宁  陈晨  孟凡 《环境科学》2016,37(6):2041-2051
根据2014年1~12月北京市环境保护监测中心监测的O3浓度数据,综合探讨了北京市O3的时空分布及与其气象条件的关系.结果表明:2014年北京市全年O3小时平均浓度约为56.18 μg·m-3,O3超标日小时平均浓度约为148.05 μg·m-3且超标日主要集中在5~9月;超标日O3日变化呈现单峰型分布,06:00或07:00为低谷,15:00、16:00左右达到峰值;超标日O3浓度在09:00~23:00明显高于夏季同时间段浓度平均;空间分布上中心城区站点O3浓度相对较低,而城区西部植物园站点浓度最高;统计的2014年北京市O3超标日地面形势场3种类型高压类、低压类、均压类各占16%、36%、48%;超标日O3浓度与气压、湿度、能见度呈负相关关系,与风速、温度呈正相关关系; 2014年5月29日~6月1日北京市发生的一次O3重污染过程是由本地光化学污染及区域输送造成的,区域输送对北京市O3浓度有着十分重要的影响.  相似文献   

3.
根据2014年4月至2015年3月湖南省长沙市城区10个监测点O_3小时浓度监测数据,综合分析了长沙市O_3的时空分布及其与前体物、气象要素相关关系。结果显示:监测期间长沙市城区O_3小时平均浓度为44.47μg/m~3,O_3高值浓度主要集中在5-9月份,季节分布上O_3平均浓度整体呈现出冬季春季秋季夏季的特征。日变化上O_3呈现倒U型分布,一般在15:00、16:00左右达到峰值浓度,日循环可分为4个阶段:即臭氧累积阶段、臭氧抑制阶段、臭氧光化学生成阶段、臭氧的消耗阶段。空间分布上整体呈现出对照点峰值浓度明显大于城市环境评价点,从城区外围站点浓度大于市中心点浓度特征。O_3的前体物CO、NO_2均呈现双峰型分布,其中O_3与CO、NO_2呈现显著的负相关关系;与气压、湿度呈负相关关系,与温度呈正明显相关关系。  相似文献   

4.
成都市臭氧污染特征及气象成因研究   总被引:5,自引:0,他引:5  
为研究成都市臭氧(O3)污染特征及其气象成因,对2014—2016年成都市6个国控环境监测站和同期气象台站逐小时地面观测数据进行了研究分析.结果表明:近4年来成都市O3污染日趋严重,O3年均浓度不断上升,较2013年升高51.2μg·m-3.O3浓度存在明显的季节变化特征:春、夏季较高,秋、冬季则较低,且各季节O3浓度变化具有很强的长期持续性特征.O3浓度日变化特征呈明显的单峰型分布,8:00出现最低值,15:00—16:00出现峰值,超标时段主要出现在13:00—17:00.O3浓度变化与紫外辐射、气温呈正相关关系,与相对湿度、风速呈负相关关系,且当紫外辐射大于12 MJ·m-2、气温高于15℃、相对湿度低于65%、西风或偏东北风控制时,成都市容易发生高浓度O3污染.  相似文献   

5.
为研究许昌市的臭氧(O3)污染情况及时空分布特征,对2014年-2016年许昌市3个国家环境空气监测点位的监测数据进行了统计分析.结果表明:2014年-2016年,许昌市O3污染状况整体呈加重趋势,2016年污染最为严重;O3浓度和超标天数均具有明显的季节变化特征,春末和夏季的O3污染最为严重;不同季节的O3、NO2、NO和NOx浓度日变化也不尽相同,同时O3具有明显的日变化特征,呈单峰型分布,峰值出现在14:00~15:00;并且O3与NO2具有较好的相关性.  相似文献   

6.
长江三角洲夏季一次典型臭氧污染过程的模拟   总被引:1,自引:0,他引:1  
张亮  朱彬  高晋徽  康汉青  杨鹏  王红磊  李月娥  邵平 《环境科学》2015,36(11):3981-3988
利用WRF/Chem空气质量模式对长江三角洲夏季一次典型臭氧(O3)污染过程的时空分布特征和物理化学机制进行了数值模拟研究.结果表明,模式能够合理地再现这次长江三角洲夏季典型O3污染过程的时空分布特征和演变规律.2013年8月10~18日,长江三角洲主要受副热带高压影响,晴天、高温和小风的气象条件有利于光化学污染的形成.模拟结果表明,长江三角洲地区气象场、地理位置、区域输送和化学生成都对O3的时空分布有影响.敏感性实验表明,上海O3浓度在海洋性气流影响下较低,但上海排放源对长江三角洲O3浓度时空分布的影响较为显著;南京近地面高浓度O3主要贡献为化学生成(烯烃和芳香烃)和高层O3的垂直输送,杭州和苏州近地面高浓度O3主要来源于物理过程.在O3生成速率最大时(11~13h)对O3前体物减排,对长江三角洲15:00的O3峰值浓度影响较为明显.  相似文献   

7.
2013年北京市NO_2的时空分布   总被引:4,自引:2,他引:2  
对2013年北京市35个自动空气质量监测子站的NO2数据进行分析,探讨NO2的时间分布特征、空间分布特征以及与PM2.5和大气氧化性的相关性关系.结果表明,NO2浓度由高到低的季节依次是冬季、秋季、春季和夏季,平均浓度分别为66.6、58.3、54.7μg·m-3和45.8μg·m-3;NO2浓度由高到低的监测站依次为交通站、城区站、郊区站和区域站,年均浓度分别为78.6、57.9、48.5μg·m-3和40.3μg·m-3.NO2月均浓度呈波浪型分布,在1月份、3月份、5月份和10月份各出现一个峰值.整体来看,区域站NO2日变化曲线呈现单峰型分布,其他站点为双峰型分布.2013年NO2浓度呈现"反周末效应",即周末大部分时段NO2浓度高于工作日.分地区来看,年均NO2浓度由高到低的依次是城六区、西南部、东南部、西北部和东北部.各站点NO2浓度与PM2.5和OX浓度均为显著正相关,表明NO2可以通过增加前体物浓度和增强大气氧化性两方面造成PM2.5浓度升高.  相似文献   

8.
利用2013年沈阳市11个空气质量自动监测站的大气O3自动连续监测数据,对O3浓度的区域分布、季节变化、日变化及其与NOx相关性等特征进行分析.结果表明,中心城区O3浓度低于外围.O3和大气氧化性OX(O3+NO2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在7:00和23:00左右出现峰值.不同季节污染物的浓度变化存在差异,O3和NOx浓度分别在夏季与冬季达到最大.NOx浓度存在200 μg/m3左右的“分界点”,NOx低于分界点时以NO2为主,高于分界点时NO占大部分.OX区域贡献主要受区域背景O3的影响,局地贡献主要受局地光化学反应制约.  相似文献   

9.
北京市夏季O3、 NOx等污染物“周末效应”研究   总被引:10,自引:3,他引:7  
石玉珍  徐永福  王庚辰  石立庆 《环境科学》2009,30(10):2832-2838
采用了2000-06-25~2000-07-07以及2000-07-26~2000-08-22在北京325 m气象塔观测平台观测到的O3、NOx(NO和NO2)、CO和SO2数据,分析了周末与工作日O3、NOx、NO、NO2、CO和SO2浓度变化的差异及成因.结果表明,除SO2之外,O3、NOx、NO、NO2和CO的周末浓度与对应工作日浓度相关性显著,均通过了显著性水平α=0.05的t检验,相关系数(R)依次为0.99、0.61、0.56、0.80和0.61.交通高峰时段(06:00~08:00)NOx和CO的周末浓度明显低于工作日浓度,该时段NOx和CO的周末浓度与工作日浓度的平均偏差分别为-28%和-9%.O3周末浓度与工作日浓度的回归系数为1.25±0.02.此外,周末O3的最大小时浓度值与最大8 h平均浓度值分别比工作日高23%和26%,表现出十分明显的"周末效应".  相似文献   

10.
北京地区大气细菌粒子浓度及其分布   总被引:4,自引:0,他引:4       下载免费PDF全文
用ANDERSEN生物粒子采样器在北京西单和怀柔观测了大气细菌粒子浓度及浓度分布。结果表明,大气细菌粒子年平均浓度,西单为3103个/m3,怀柔为623个/m3。不同粒度的大气细菌粒子浓度在一天内西单有7:OO、19:00二个高峰时和13:00、夜间1:00二个低谷时;而怀柔有19:00~22:00一个高峰时和13:00一个低谷时。大气细菌粒子的浓度分布是从1~6级逐级减小。小于8.2μm的可吸入细菌粒子:西单为82.4%,怀柔为64.0%。   相似文献   

11.
为了解保定臭氧污染状况,利用2013年各环境空气自动监测点位监测数据,对臭氧污染状况及其时空变化特征进行分析.研究结果表明:①臭氧浓度的日变化呈单峰型结构,最高值与最低值分别出现在14点和6点,臭氧呈现明显的"周末效应".②臭氧浓度的月和季度变化具有典型的季节特征,春、夏季高,秋、冬季低,与太阳辐射强度呈正相关性.③各监测点位的臭氧浓度值差异明显,最高值与最低值分别出现在游泳馆点位和华电二校点位.  相似文献   

12.
舟山市臭氧污染分布特征及来源解析   总被引:1,自引:0,他引:1  
臭氧及其前体物在环境空气中传输和反应过程复杂,本研究利用舟山市国控点2014年的监测数据对臭氧污染时空分布开展了统计分析,并利用CMAQ (community multiscale air quality)模型模拟了舟山市2014年臭氧污染形成,选用ISAM(integrated source apportionment method)源追踪算法计算来源贡献率.结果表明,舟山市春秋季节的臭氧浓度相对较高,浓度高值出现在午后13:00~15:00.普陀站的臭氧平均浓度最高而位于中心城区的临城站最低.臭氧总体浓度不高,但易出现单日浓度高值,其中5月臭氧超标率最高.舟山市本地臭氧形成主要受VOCs浓度控制,而源解析结果表明舟山市全年外来源占总贡献的69. 46%.本地源中,工业燃烧源、工艺过程源、道路移动源、非道路移动源的贡献率相差不大,且表现出显著的港口城市特征,船舶源、石化源、储运源分别占总贡献的4. 45%和1. 01%和1. 80%.控制臭氧污染应采取周边区域联防联控的措施,以VOCs排放源为主,不同来源协同调控的措施.  相似文献   

13.
北京城区与下游地区臭氧对比研究   总被引:9,自引:8,他引:1  
2005年6月~2006年9月,分别在北京城区和兴隆对臭氧和气象要素进行了连续观测. 结果表明,除冬季外,北京地区臭氧的产生和消耗速度明显高于兴隆;期间北京和兴隆观测到的臭氧最大值(体积分数)分别为198.9×10-9和151.2×10-9. 臭氧超过国家二级标准的时数两地分别为171 h和255 h,北京城区90%以上集中在16:00前,而兴隆夜间臭氧污染占82%. 受到北京输送的影响,兴隆臭氧日变化的最高值出现时间比北京晚3~4 h,但是冬季兴隆受到的影响较小. 兴隆观测到的超标事件与北京的输送具有良好的相关性,持续稳定的天气条件和昼夜循环的局地环流可以导致兴隆臭氧持续积累,并在夜间形成臭氧“双峰”现象. 兴隆的AOT40分别为23.1×10-6×h、 26.5×10-6×h、 14.1×10-6×h,表明北京对下游区域的农业产生具有严重影响.  相似文献   

14.
臭氧是城市光化学烟雾的主要成分,同时也是重要的温室气体,因此臭氧污染已经成为城市空气质量的重要因素.对重庆市渝中区2015年3个空气质量自动监测点臭氧浓度进行比较,并分析了臭氧与环境、日照、气温、挥发性有机物、NO2、PM10、PM2.5的相关性.结果表明:臭氧浓度与监测点周围环境有关;臭氧浓度呈典型的季节变化趋势,与日照、气温呈明显的正相关;臭氧浓度小时值变化出现明显的日变化规律;臭氧浓度与挥发性有机物呈正相关,与NO2、PM10、PM2.5有较好的负相关性.  相似文献   

15.
北京市郊区夏季臭氧重污染特征及生成效率   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究北京郊区夏季O3(臭氧)重污染过程特征及O3生成的光化学敏感性,基于2016年夏季在北京郊区开展的针对O3及其相关污染物的强化观测试验(7月23日—8月31日,共计40 d),分析了观测期间O3浓度[以φ(O3)计]变化特征、O3重污染过程主控因素与O3敏感性化学特征.结果表明:观测期间φ(O3)超标时有发生,最大小时φ(O3)为151.1×10-9,其中有15 d的φ(O3)最大8 h滑动平均值(O3-max-8h)超过了GB 3095—2012《环境空气质量标准》二级标准限值,占观测天数的37.5%;不同O3重污染过程成因有所不同,城市烟羽传输的污染物对郊区O3重污染过程影响显著(观测期间臭氧重污染过程:过程1,7月27—29日;过程3,8月9—11日;过程4,8月16日;过程5,8月21—24日),区域光化学污染对郊区O3重污染过程也有贡献(观测期间O3重污染过程2:8月4—6日);结合后向气流轨迹进一步辅助说明了不同重污染过程中O3的来源不同.研究还发现,观测区域存在反“周末效应”现象,说明观测区域周末受人为影响较为明显;基于观测数据计算的OPE(O3生成效率)分析了O3光化学敏感性表明,在有OPE值的22 d内NOx控制区和VOCs控制区出现的概率(41%)相等,即观测区域O3对NOx和VOCs均敏感;此外还发现,在O3重污染过程中光化学敏感性会随其反应进程发生改变,由NOx控制区逐渐转变为VOCs控制区.   相似文献   

16.
北京夏季道路环境中NO_x,NMHCs及气象因子对ρ(O_3)的影响   总被引:1,自引:0,他引:1  
通过对北京市2009年夏季3种典型道路(开阔道路、交叉道路、街道峡谷)环境中O3,O3前体物(NO,NMHCs等)及气象因子的监测,分析了北京市典型道路环境中ρ(O3)的变化规律及O3前体物质量浓度与气象因子对ρ(O3)的影响.结果表明:夏季北京市典型道路环境中ρ(O3)呈明显的日间单峰变化规律,这与非道路环境并无不同.不同类型道路环境中ρ(O3)的变幅与峰值出现时间有所不同;3种典型道路环境中ρ(O3)与ρ(NO),ρ(NMHCs)等均呈良好的负相关关系,与ρ(NO2),ρ(NO2)/ρ(NO)呈良好的正相关关系;3种类型道路环境中ρ(O3)均呈现出与紫外强度、温度相同的变化趋势,而与相对湿度的变化趋势相反,ρ(O)高值出现于高温、强紫外线与低湿度的时刻,ρ(O)变化略滞后于紫外强度变化.  相似文献   

17.
北京夏季典型臭氧污染分布特征及影响因子   总被引:19,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   

18.
In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0–1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day’s surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号