首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
浮游微型真核生物作为初级生产者,细菌捕食者和较大型生物寄生者,在维持生态系统稳定中起核心作用.因此,研究浮游微型真核生物对温排水增温的响应对评价近年来大量电厂兴建的环境效应具有重要意义.沿象山港乌沙山电厂温排水水流采集表层水样,利用Illumina技术测定18S r DNA基因研究浮游微型真核生物群落组成.真核浮游生物的主要组成为囊泡虫门(Protalveolata)、纤毛亚门(Ciliophora)、甲藻门(Dinoflagellata)和丝足虫类(Cercozoa).多元回归树分析发现浮游微型真核生物多样性主要受溶解氧、硝态氮和温度的控制.温排水造成的增温梯度显著地改变了浮游微型真核生物的群落组成(Global RANOSIM=0.422,P0.001);反向选择筛选到空间距离、溶解氧、叶绿素a和温度是造成群落变异的主要因子.浮游微型真核生物的空间分布遵循空间距离-群落相似性衰减模型(R=-0.192,P=0.039),周转速率为0.002.此外,筛选到15个敏感的真核生物科,其相对丰度与增温幅度显著相关.重要的是对某一特定的科,其相对丰度随温度的变化与其已知的生态功能相吻合,可以作为评价温排水增温的指示种群.本研究阐明了温排水增温梯度下真核浮游生物群落的空间分布规律,并为评价温排水对微生态效应提供了灵敏的生物学指标.  相似文献   

2.
实施核电站温排水的动态环境监测和评估,对于掌握核电站对海域生态环境的影响,以及开展海洋生态环境保护具有十分重要的意义。本文以Landsat8-TIRS为卫星遥感数据源,以广东阳江核电站温排水为示范区,分别从海表温度信息提取、温排水温度场分布以及温升区范围等方面展开了分析,探讨了阳江核电站温排水季节性分布特征。研究表明:温排水高温温升区域主要集中在临近排水口附近,低温温升则向四周扩散;在四个季节核电站温排水的影响差异较大,冬季的温排水温升面积最大,秋季次之,然后是夏季,春季最小,在低温温升区尤为明显;潮流是造成阳江核电站温排水季节性差异的主要原因之一;落潮和北风或偏北风更有利于温排水高温温升区水体的热扩散。  相似文献   

3.
在对电厂周围湿地生态系统进行多次现场调查的基础上,运用二维温度场和水动力场耦合求解的温排水模型预测电厂温排水的影响范围,结果是:电厂温排水将引起排放口附近海域最大影响面积为6.69 km2,最小为0.16 km2.分析发现,电厂温排水的温升对滩地植被、浮游生物、底栖动物、鱼类均不会造成明显的危害,相反在水温较低的季节,会提高海洋生物的丰度和生物多样性指数,并为保护区鸟类及其它物种提供丰富的饵料.但余氯对排放海域中的浮游生物有致命的威胁,对其他物种无明显影响,但存在一定的潜在影响.本文研究可以为电厂温排水的环境影响评价、温排水排放的有效管理及湿地生态系统的保护提供一些理论依据.  相似文献   

4.
刘永叶  陈鲁  乔亚华  杨阳  曹亮 《环境工程》2016,34(11):60-63
随着我国电力事业的快速发展,电厂循环冷却水(温排水)的余热排放对受纳水体生态环境造成的负面热影响(即热污染)已日益引起社会关注。基于国内现有的温排水排放控制标准可执行性不强的现状,对我国电厂温排水的热污染控制标准的基础技术要素——温排水混合区边缘温升限值进行了研究。以我国北方某典型滨海核电厂址邻近海域的代表性海洋生物为研究对象,以各季节不同受试物种最大临界温度(CTM)的统计分析结果,作为确定该厂址温排水混合区边缘温升限值的主要依据。并结合法规调研法,最终确定该典型滨海核电厂址温排水混合区边缘温升限值的推荐值为3.6℃。  相似文献   

5.
本研究利用二维潮流场和温升场数值模型预测分析了核电厂不同温排水布置方式下温升扩散特点和影响范围。在此基础上结合周边海洋生态环境敏感区的特点,以海洋生态环境功能区水质环境管控要求作为比选优化指标,对不同的温排水布置方案进行了比选和优化,从降低温排水影响范围、减小对周边海洋生态环境功能区水质环境影响以及降低取水温升的角度给出了最优排水布置方案。研究结果表明,核电厂温排水的影响范围与周边海域地形地貌、海洋水文特征以及排水口的布置形式、位置等密切相关,暗管深排方案有利于温排水的稀释扩散,对于降低高温升区影响范围具有积极作用,但影响低温升区扩散范围的因素较多,深水排放并非一定能够减小低温升区的影响范围。  相似文献   

6.
本文对受河南平顶山姚孟热电厂温排水影响的白龟山水库的浮游植物群落的情况进行了野外调查,并在室内对浮游植物的群落结构及其生态学特征进行了模拟增温试验。试验结果表明:水体增温对水库浮游植物的种群组成、优势种的优势度、藻类密度和生物量均有影响。影响的程度与环境固有的水温及增温强度有关。室内增温模拟试验还表明:连续的增温对藻类的光合色素含量和光合作用强度均有影响。   相似文献   

7.
沿海地区电厂温排水在物理、化学、生物等方面对附近海域温度造成的影响越来越受到人们的关注。本文采用现场实测与数值模拟相结合的方法,确定电厂温排水的影响范围,模拟受纳水域的温升分布,评价温排水对海洋生态环境的影响程度,以期为近海海域热污染防治提供技术依据。  相似文献   

8.
电厂温排水对两种蚤类的毒性及生殖影响   总被引:1,自引:0,他引:1  
通过实验室模拟电厂温排水,研究了温度及余氯浓度对中华哲水蚤(Calanus sinicus)及蒙古裸腹蟤(Moina Mongolic Daday)的毒性及生殖影响。结果表明:温度升高,余氯对受试蚤类的半致死浓度显著降低,但是该致死浓度远远高于目前电厂温排水余氯浓度;受试蚤类对电厂温排水余氯浓度敏感,产生了明显的回避效应;被余氯浸染的蒙古裸腹蟤发育期延长、繁幼数量减低,产幼间隔变长。  相似文献   

9.
选取同天过境的Landsat5TM和HJ-1B红外相机数据,在获取3个大气参数后,结合辐射传输模型分别对大亚湾核电基地附近海域海表温度和温排水温升区的分布情况进行遥感监测,对比结果显示,环境卫星遥感监测数据与TM数据监测所得温排水在空间分布上具有较高一致性,二者反演出的绝对温度相差不超过1.1℃,相同温升等级范围内的相对温度均值也不超过0.4℃.因此,HJ-1B红外相机可满足核电站热污染的监测需求.  相似文献   

10.
基于国内现有的温排水排放控制标准可执行性不强的现状,对我国电厂温排水的热污染控制标准中的关键参数-温排水排放口的最高排放温度限值进行了研究。以我国北方某典型滨海核电厂址邻近海域的代表性海洋生物为研究对象,以各季节不同受试物种高起始致死温度(UILT50)的统计分析结果,作为确定该厂址温排水排放口控制的高温限值的主要依据。并结合法规调研法和水温极值预测法,最终确定该典型滨海核电厂址温排水最高排放温度限值的推荐值如下:冬季为31℃,春、秋季为32℃,夏季为34℃。  相似文献   

11.
2011年1月对湛江电厂温水排放口附近水域的生态环境进行了采样调查,分析了温排水对受纳水体的水温、溶解氧、营养盐、叶绿素a以及浮游植物的细胞密度、群落组成多样性和均匀度的影响。结果表明:电厂温排水主要影响表层水且范围较小;溶解氧虽随水温的变化稍有变化,但含量均在5.00 mg/L以上,符合渔业水域水质标准;温排水促进了受纳水体的富营养化,自然水温处至排水口中心,营养盐(无机氮、活性磷酸盐)、叶绿素a和浮游植物的细胞密度、种类数呈递增趋势;从浮游植物群落的多样性指数和均匀度分析,温排水提高了群落的多样性和抗干扰能力;在对浮游植物与主要环境因子间的偏相关性分析发现,浮游植物细胞密度和水温呈极显著正相关,相关系数为0.941 8(p<0.01),与活性硅酸盐呈显著负相关,相关系数为-0.892 4(p<0.05),与其他因子相关性不明显。  相似文献   

12.
为研究鲅鱼圈热电厂温排水的热污染问题,对其附近海域潮流和水温进行了现场观测,并利用RMA-10三维有限元模型模拟热电厂附近海域海水温升场的分布。现场观测和数值模拟结果表明:(1)温排水对电厂邻近海域温度分布影响明显,模拟得出鲅鱼圈海域表层海水受电厂温排水影响温升在1℃和4℃上的面积平均值分别为0.648 km2和0.199 km2;(2)热羽面积变化趋势与涨、落潮过程呈现高度相关性,同一潮次中低潮时刻热羽面积大于高潮时刻。(3)海水温升分布呈现出较明显的垂向差异,表层温升面积为底层温升面积的2~4倍,表明由于温差所产生的浮力效应,温排水主要集中于海水表层流动。研究结果表明通常采用的基于垂向平均的二维温排水数值模型无法精确模拟温度分层,只有建立三维模型才能对温排水引起的温升场进行精确模拟。  相似文献   

13.
本文以罗源湾可门电厂温排水为研究对象,基于现场调查和数值模拟手段,研究了温排水对电厂周边海域水体环境温升的影响,分析了温升的平面分布和垂向变化特征,并绘制了最大温升包络线图。研究结果表明,温升平面分布与电厂海域潮流特征及岸线地形有关。温排水入海后,表层温升水基本上沿与岸线平行方向的电厂上下游海域扩散,沿岸方向扩散距离远大于离岸方向扩散距离。温升最大的区域位于排水口附近,并沿离岸和沿岸方向温升减小,且离岸方向减小更快。在剖面方向上,海水温升影响最大的区域在表层,并沿垂直方向影响区域迅速减小,对水面3 m以下的区域影响很小。潮差对水温的扩散趋势及范围有影响,总体上,潮差越小,温升水的扩散面积越大。  相似文献   

14.
To study how global warming and eutrophication a ect water ecosystems, a multiplicative growth Monod model, modified by incorporating the Arrhenius equation, was applied to Lake Taihu to quantitatively study the relationships between algal biomass and both nutrients and temperature using long-term data. To qualitatively assess which factor was a limitation of the improved model, temperature variables were calculated using annual mean air temperature (AT), water temperature (WT), and their average temperature (ST), while substrate variables were calculated using annual mean total nitrogen (TN), total phosphorus (TP), and their weighted aggregate (R), respectively. The nine fitted curves showed that TN and AT were two important factors influencing algal growth; AT limited growth as algal photosynthesis is mainly carried out near the water surface; N leakage of phytoplankton and internal phosphorus load from sediment explains why TN was the best predictor of peak biomass using the Monod model. The fitted results suggest that annual mean algal biomass increased by 0.145 times when annual mean AT increased by 1.0°C. Results also showed that the more eutrophic the lake, the greater the e ect AT had on algal growth. Subsequently, the long-term joint e ect of annual temperature increase and eutrophication to water ecosystems can be quantitatively assessed and predicted.  相似文献   

15.
To study how global warming and eutrophication affect water ecosystems, a multiplicative growth Monod model, modified by incorporating the Arrhenius equation, was applied to Lake Taihu to quantitatively study the relationships between algal biomass and both nutrients and temperature using long-term data. To qualitatively assess which factor was a limitation of the improved model, temperature variables were calculated using annual mean air temperature (AT), water temperature (WT), and their average temperature (ST), while substrate variables were calculated using annual mean total nitrogen (TN), total phosphorus (TP), and their weighted aggregate (R), respectively. The nine fitted curves showed that TN and AT were two important factors influencing algal growth; AT limited growth as algal photosynthesis is mainly carried out near the water surface; N leakage of phytoplankton and internal phosphorus load from sediment explains why TN was the best predictor of peak biomass using the Monod model. The fitted results suggest that annual mean algal biomass increased by 0.145 times when annual mean AT increased by 1.0℃. Results also showed that the more eutrophic the lake, the greater the effect AT had on algal growth. Subsequently, the long-term joint effect of annual temperature increase and eutrophication to water ecosystems can be quantitatively assessed and predicted.  相似文献   

16.
运用FLUENT软件对重庆市洪崖洞水源热泵系统尾水排入受纳水域的过程进行二维数值模拟,选取FLUENT中非耦合、隐式求解器对模型内的定常流动进行求解,得出受纳水域受水源热泵系统温排水影响后的温度梯度和温升面积。在温排水流量为4 500 m3/h、温差为6℃的条件下,得出受纳水域温升值超过1℃的水域面积约为1 600 m2,为模拟江河水域面积的2.0%。选取1℃温升值作为温升带边界控制值,在热泵系统最大负荷工况下,计算得出受纳水域的热环境容量为312.5(m.3℃)/s,剩余热环境容量为306.25(m.3℃)/s。根据地表水环境质量标准,该工程温排水量小于受纳水域的热承载力,不会对受纳水域生态环境造成热污染。  相似文献   

17.
基于2022年冬季三门湾海域20个定点站和2条走航测线的水温观测数据,分析了三门核电站冬季温排水的时空特征。受温排水影响,冬季观测海域表层水温通常为10 ℃~19 ℃。从垂向上看,位于排水口东侧的分层水温测站存在温度层化,表底温差平均值在大、小潮期间分别为0.16 ℃~1.21 ℃和0.51 ℃~2.37 ℃,小潮期间温度层化较强且持续时间较大潮期间长3~13 h;其余分层水温测站的水体总体呈混合均匀状态。涨急和涨憩时刻,温排水主要被限制在排水口外较小的区域,并向北经猫头水道进入蛇蟠水道;落急和落憩时刻,温排水则向南影响南部滩涂及其以东海域。以1 ℃温升为标准,涨潮时段温排水最远可影响到排水口西北约3 km处,落潮时段温排水最远可影响到排水口东南约5 km处。三门核电厂址以南各测站小潮期典型潮时水温通常比大潮期高0.5 ℃~5.0 ℃,说明三门核电站以南海域在小潮期受温排水的影响更大。  相似文献   

18.
随着城镇化水平不断提高和全球气候变暖,城市热环境越来越受到关注。热环境是无法精确预知与预测的灰色系统。文章以城市热环境为切入点,对影响热环境的各驱动因子进行灰色优势分析,结果表明:在地理位置、日照、海拔、大气状况一定的条件下,城镇化水平对热环境起着决定性的影响,城镇空间扩展面与热环境过载区域基本吻合,除此之外绿地指数、地表层湿度、工业用地率的灰色优势度也较高,而地区生产总值强度,工农业总产值强度,人口密度的灰色优势度较低。在灰色优势度分析基础上对灰色聚类方法进行优化,利用优化的灰色聚类方法对研究区进行热环境评估分级,其与遥感反演地温平均重合率83%,更能反映热环境的形成原因。由于灰色聚类评估还存在主观因素影响如白化权函数的确定等以及遥感数据的不确定性,模型中的定量精确度有待进一步研究。  相似文献   

19.
运用Fluent软件对重庆市嘉陵江化龙桥段瑞安新天地江水水源热泵系统尾水排入受纳水域的过程进行二维数值模拟,选取Fluent中非耦合、隐式求解器对模型内的定常流动进行求解,得出受纳水域受水源热泵系统温排水影响后的温升面积和温度梯度。结果表明:在温排水流量为2.0×103 m3/h、温差为4℃的条件下,计算该水域沿水流方向温升超过1℃的最大影响距离为150.4 m,温升超过1℃的水域面积约为1 525 m2,为模拟江水面积的8.59%。选取1℃温升值作为温升带的边界控制值,并在热泵系统最大负荷工况下,根据W=Q×ΔT计算研究水域热环境容量为19.402 m3.℃/s,剩余热环境容量为17.736 m3.℃/s。根据地表水环境质量标准,该工程温排水量小于受纳水域的热承载力,不会对受纳水域生态环境造成热污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号