首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制   总被引:23,自引:1,他引:22  
采用实时控制策略和曝气 搅拌交替运行方式在 ( 2 6± 1 )℃下开发了一种新型短程硝化反硝化生物脱氮工艺 :实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺 .并对其与实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮工艺进行了比较研究 .结果显示 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺无论从硝化速率、反硝化速率还是从硝化时间、反硝化时间上均优于实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮两种工艺 .其硝化速率和反硝化速率分别是预先设定时间控制交替好氧 缺氧短程硝化反硝化工艺的 1 3 8倍和 1 2 5倍 ,是实时控制传统SBR法短程硝化反硝化脱氮工艺的 1 82倍和 1 6 1倍 .因此 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺不但能够合理分配曝气和搅拌时间 ,而且还能提高硝化、反硝化速率 ,缩短反应时间 ,从而达到降低运行成本的目的  相似文献   

2.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   

3.
固定化微生物在好氧条件下同时硝化和反硝化   总被引:24,自引:1,他引:24  
研究了将硝化菌和反硝化菌混合包埋 ,利用载体对氧产生的扩散阻力在颗粒内部形成好氧区、缺氧区和厌氧区 ,使硝化和反硝化两个过程有机的结合在一起 ,在好氧条件下同时进行硝化和反硝化的新型生物脱氮技术。试验结果表明 :固定化后细胞的活力回收率≥ 70 % ;混合固定的硝化菌和反硝化菌在好氧条件下进行间歇生物脱氮时至少可稳定操作 2 2d ,其间脱氮速率约为 0 1 1kg/m3·d ;单级生物脱氮的最适 pH和温度分别是 8 2和 30℃。  相似文献   

4.
硝化类型对污水脱氮过程中N2O产生量的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
采用好氧-缺氧SBR系统,研究实际生活污水脱氮过程中N2O的产生与释放情况,重点考察硝化类型对脱氮过程中N2O产生量的影响.结果表明,实际生活污水脱氮过程中N2O主要产生于硝化阶段,而反硝化阶段有利于降低N2O产生量.硝化类型对脱氮过程中N2O产生量有显著影响.全程硝化和短程硝化过程中N2O-N产生量分别为1.87,0.90mg/L,短程硝化过程中N2O产生量远低于全程硝化过程中N2O产生量.在DO浓度不受限制的情况下,应用实时过程控制,实现短程硝化反硝化,可降低污水脱氮过程中N2O产生量.  相似文献   

5.
对交替好氧 缺氧短程硝化反硝化生物脱氮工艺中曝气和搅拌时间的控制模式进一步研究 .结果表明 ,ORP(氧化还原电位 )和pH的一阶和二阶导数变化可以作为控制交替好氧和缺氧运行方式的过程控制参数 .在此基础上 ,建立了控制交替好氧和缺氧时间的过程控制模式 .按照所建立的过程控制模式对进水COD、氨氮和总氮浓度分别为 194 5 5~ 92 4 90mg·L-1,2 5 6 8~ 81 4 8mg·L-1和 36 4 6~ 90 5 5mg·L-1.的废水实施交替好氧 缺氧控制 ,经过 2个月的运行 ,COD、氨氮和总氮的下降率和去除率仍然保持在 90 % ,99%和 92 % .因此 ,交替好氧 缺氧短程硝化反硝化生物脱氮工艺控制模式是可行的 ,它不但科学地分配了好氧和缺氧时间 ,提高了反应速率 ,而且为最终实现该工艺的模糊控制奠定了理论基础  相似文献   

6.
取自强化A/O工艺处理合成氨废水中试装置的活性污泥,在pH、碳源和温度均不为限制性因素条件下,短程反硝化和全程反硝化均为零级反应.结果表明,相对于全程反硝化,短程反硝化可以节约14.1%的碳源和55.7%的反硝化时间;初始NO2--N为36.82 mg.L-1时反硝化最快,比反硝化速率(以NO2--N/VSS计)为0.509 g.(g.d)-1;pH为7.5时反硝化速率最快,实际运行中应避免缺氧区pH〉9;选择性增殖的反硝化菌对甲醇和乙醇形成了良好的适应性,却对葡萄糖和乙酸等其它低分子易降解有机物产生了不适应性.  相似文献   

7.
采用3种不同曝气模式的模拟氧化沟分别形成2、4、7个缺氧-好氧(A/O)分区,研究了3种工况下氧化沟的脱氮方式和脱氮效果.结果表明,在好氧缺氧区体积比例相同的条件下,A/O分区越多,则好氧区平均DO浓度越小,硝化菌活性越低,在2、7个4、A/O分区的3种工况下的硝化菌活性分别为4.80、和3.73mg·g·h4.65-1-1;A/O分区少,则每一分区的缺氧段和好氧段长,进水后反硝化菌利用的有机物就多,在好氧区中的有机物就少,用于硝化的DO量多,从而硝化和脱氮效果好.试验中3种工况的总氮平均去除率分别为60.14%、47.93%、57%,出水总氮平均浓度分别为17.01、22.17和27.92mg·L-1.在氧化沟工艺中,氮的去除途径主要是缺氧反硝化及同步硝化反硝化(SND).分区多,则主要通过同步硝化反硝化脱氮;分区少,则以缺氧反硝化脱氮为主,这是由于碳源限制致使同步硝化反硝化的脱氮效率比缺氧反硝化低.  相似文献   

8.
氧化沟不同A/O分区对脱氮效果影响的模拟实验研究   总被引:1,自引:0,他引:1  
采用3种不同曝气模式的模拟氧化沟分别形成2、4、7个缺氧-好氧(A/O)分区,研究了3种工况下氧化沟的脱氮方式和脱氮效果.结果表明,在好氧缺氧区体积比例相同的条件下,A/O分区越多,则好氧区平均DO浓度越小,硝化菌活性越低,在2、7个4、A/O分区的3种工况下的硝化菌活性分别为4.80、和3.73mg·g·h4.65-1-1;A/O分区少,则每一分区的缺氧段和好氧段长,进水后反硝化菌利用的有机物就多,在好氧区中的有机物就少,用于硝化的DO量多,从而硝化和脱氮效果好.试验中3种工况的总氮平均去除率分别为60.14%、47.93%、57%,出水总氮平均浓度分别为17.01、22.17和27.92mg·L-1.在氧化沟工艺中,氮的去除途径主要是缺氧反硝化及同步硝化反硝化(SND).分区多,则主要通过同步硝化反硝化脱氮;分区少,则以缺氧反硝化脱氮为主,这是由于碳源限制致使同步硝化反硝化的脱氮效率比缺氧反硝化低.  相似文献   

9.
试验采用改良SBR工艺处理人工模拟生活废水,研究不同的C/N,DO和好氧区与缺氧厌氧区体积比对同步硝化反硝化的影响,结果表明:C/N为12,ρ(DO)为1.0~2.0mg·L-1、好氧区与缺氧厌氧区体积比为1∶1时,反应器内高效稳定地实现了同步硝化反硝化脱氮过程。  相似文献   

10.
DO对SBBR工艺同步硝化反硝化的影响研究   总被引:2,自引:1,他引:1  
实验研究了序批式生物膜反应器(SBBR)同步硝化反硝化生物脱氮城市污水处理工艺。试验结果表明:DO是影响SBBR工艺实现同步硝化反硝化的一个重要因素,将DO控制在2.8~4.0mg/L的范围内,可以取得较好同步硝化反硝化效果,总氮去除率可达67%以上。通过好氧反应过程中溶解氧在生物膜内反应扩散模型以及扫描电镜对生物膜的形态结构观察,分析了SBBR工艺同步硝化反硝化机理。SBBR工艺同步硝化反硝化主要是由微环境引起的,生物膜在好氧条件下能创造缺氧微环境,DO浓度直接影响生物膜内部好氧区与缺氧区比例的大小,进而影响硝化和反硝化的效果。DO浓度升高,使氧传递能力增强,使生物膜内部原来的微环境由缺氧性转为好氧性;反之DO浓度降低,生物膜内部微环境倾向于向缺氧或厌氧发展。  相似文献   

11.
应用A/O生物脱氮中试试验装置处理实际生活污水,从pH、污泥浓度(MLSS)、自由氨(FA)、温度、污泥龄(SRT)、溶解氧(DO)和水力停留时间(HRT)等方面系统的分析了A/O工艺实现短程硝化反硝化的主要影响因素.结果表明,DO浓度是A/O工艺实现短程硝化反硝化的主要因素,由FISH检测发现长期控制低DO浓度(0.3~0.7 mg·L-1)可以导致亚硝酸盐氧化菌(NOB)的淘洗,从而实现稳定的亚硝酸盐积累率,试验获得平均亚硝酸氮积累率为85%,有时甚至超过95%.提高DO浓度,1周内亚硝酸氮积累率从85%降到10%,继续维持低DO浓度,大约需要2个污泥龄时间才可重新恢复到较高的亚硝酸氮积累率(>75%).低DO浓度下,试验初期污泥沉淀性能随着亚硝酸氮积累率的增加而变差,而在试验后期,无论亚硝酸氮积累率多高,污泥沉淀性能一直很好,SVI值处于80~120 mL·g-1  相似文献   

12.
序批式移动床生物膜反应器内同步短程硝化反硝化的控制   总被引:6,自引:1,他引:5  
在序批式移动床生物膜反应器(SBMBBR)内,对进水COD较低的条件下,模拟生活污水的亚硝化及脱氮性能进行了研究.结果表明,缺氧时间、进水COD、NH44 -N浓度、pH值以及溶解氧对亚硝化过程有明显影响.在进水COD为100mg·L-1NH4 4-N浓度为50mg·L-1时,调控溶解氧、pH,出水的亚硝化率可到99.7%,总氮去除率可达66.4%,表明系统中发生了同步短程硝化反硝化.  相似文献   

13.
针对城镇污水中碳源不足、C/N比低导致脱氮性能不佳的问题,建立了A2/O中试装置,通过调整系统缺氧/好氧分区比例及好氧区溶解氧水平,探究亚硝氮积累率及氮类污染物去除情况.结果表明,在DO为2. 0~2. 5 mg·L~(-1)条件下,改变缺氧/好氧分区比例对系统的影响较小,难以实现短程硝化;当控制DO为0. 5~0. 8 mg·L~(-1)、V_缺∶V_好=1∶1时为系统最优工况,此时系统好氧区末端亚硝氮积累率稳定在62%以上,出水总氮降至9. 0 mg·L~(-1),能够实现深度脱氮的目标.分析硝化菌表观活性可知,最优工况下SAOR与SNOR分别(以N/VSS计)为0. 14 g·(g·d)~(-1)和0. 04 g·(g·d)~(-1),二者差值较试验其他阶段更为明显,即NOB活性受到更高程度抑制是提高亚硝氮积累率的直接原因. Illumina MiSeq测序结果表明,该阶段NOB数量显著低于其他阶段.通过间歇OUR法分析缺氧区进出口碳源组成情况,结果表明最优工况下系统通过短程硝化节约碳源27. 3%,可生化性COD在缺氧区消耗63. 6%,远高于其他阶段,是低C/N比城市污水实现深度脱氮的碳源有力保障.  相似文献   

14.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

15.
采用膜生物反应器处理模拟生活污水,研究了短程硝化生物脱氮的效果,试验结果表明:在中温(25~30℃),曝气量为0.15m3/h、pH值为7~8的条件下,COD去除率平均值为89.0%(最高达95.4%),出水氨氮在5.0mg/L以下(平均3.1mg/L),NO2-得到了富集,出水中基本监测不出NO3-,总氮去除率平均为86.2%(最高达94.0%),且系统对有机物与氮源的耐冲击负荷能力较好;曝气量和pH值是短硝化过程的重要影响因素。  相似文献   

16.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

17.
N2O是一种强温室气体,而污水处理已被报道是导致N2O产生的潜在人为源之一,且主要发生在生物脱氮的硝化和反硝化过程.本文立足于当前的污水脱氮热点工艺,如短程硝化反硝化、同步硝化反硝化、厌氧氨氧化和反硝化除磷,介绍了这些新工艺的反应机理,描述了它们在非稳态运行过程N2O的释放特征以及溶解氧(Dissolved Oxygen,DO)、NO 2-、自由氨(Free Ammonia,FA)、自由亚硝酸(Free Nitrous Acid,FNA)和进水COD/N等关键因子的影响作用,并进一步从微生物学和生物化学角度剖析了各工艺脱氮过程产生N2O的可能原因.在全球积极应对气候变暖趋势的大背景下,探明污水脱氮工艺N2O的释放本质,提出有效的减排控制方法,对于防止环境污染问题由水环境转移到大气环境具有重要意义.  相似文献   

18.
A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号