首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
通过现场试验研究了工程规模的短程硝化反应器处理实际味精废水的运行性能.结果表明,短程硝化工艺(Single Reactor High Activity Ammonia Removal Over Nitrite,SHARON)适合处理低浓度味精废水(pH值为9.36~10.49;NH4*-N浓度5b 239.70~341.23 mg·L-1;COD为1000~1500 mg·L-1).短程硝化反应器的硝化性能良好,短程硝化效率(PartialNitrification Efficiency,PNE)高达94.56%±4·30%;在反应器内pH值为9.25-9.80、游离氨(Free Ammonia,FA)浓度为20~70 mg·L-1的工况下,短程硝化反应器运行性能稳定,PNE达96.64%±4·73%,出水中(NO:-.N)/(NH;-N)为0.70~1.35,出水pH值稳定在6.50-7.00,适用于后续厌氧氨氧化工艺(Anaerobic Ammonium 0xidation ANAMMOX)处理.进水FA浓度不宜过低,若反应液中的FA浓度低于20 mg·L-1,可导致NO-3-N浓度升高,不利于NO-2-N积累.采取一次性投加石灰的方式调节废水碱度,只适用于进水NH4 -N浓度较低的情况;若进水NH4 -N浓度较高,则会导致进水pH过高而抑制亚硝酸菌生长,宜采用多次投加或分段投加石灰的方式来调节废水碱度.  相似文献   

2.
同步硝化反硝化耦合除磷工艺的快速启动及其运行特征   总被引:4,自引:4,他引:0  
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

3.
不同氮浓度冲击对颗粒污泥脱氮过程中N2 O产生量的影响   总被引:2,自引:2,他引:0  
韩雪  高大文 《环境科学》2013,34(1):204-208
采用好氧-缺氧SBR污水生物处理系统,考察不同进水NH4+-N浓度冲击对同步硝化反硝化型颗粒污泥脱氮过中N2O的释放规律和脱氮效果的影响.结果表明,当进水NH4+-N浓度分别从稳定的30 mg·L-1突然提高到40、60和80 mg·L-1时,氨氮去除率从80.04%降至61.40%、39.65%和31.02%,但氨氮的去除量变化不大,都在25 mg·L-1左右;另外,N2O产生量受进水NH4+-N冲击较小,在4个不同的进水NH4+-N浓度下,典型周期N2O产生量分别为3.019、3.489、3.271和3.490 mg·m-3,而且N2O释放速率都在0.004 5 mg·(m3·min)-1左右.同步硝化反硝化型颗粒污泥系统的好氧阶段和缺氧阶段均有N2O产生.不同的NH4+-N浓度冲击下,同步硝化反硝化型颗粒污泥系统对NH4+-N的去除量没有变化,但由于进水NH4+-N浓度的提高引起系统脱氮率显著下降.  相似文献   

4.
短程硝化-反硝化生物滤池脱氮机制研究   总被引:7,自引:4,他引:3  
孙迎雪  徐栋  田媛  李燕飞 《环境科学》2012,33(10):3501-3506
研究了短程硝化生物滤池的调控因素以及短程硝化-反硝化生物滤池的脱氮机制.结果表明,针对城市污水处理厂二级出水中的氨氮和总氮,在水温为(30±1)℃的条件下,提高进水pH值有助于硝化生物滤池中亚硝酸盐的积累,较好地实现短程硝化过程,当进水pH值平均为8.5时,亚硝酸盐的积累达到最大.沿硝化生物滤池水流方向,pH和DO的变化呈相反趋势,亚硝酸盐的积累呈增加趋势,在反应器出水口较好地实现了亚硝酸盐的积累.短程硝化-反硝化生物滤池对NH4+-N有较好的去除效率(90%以上);当反硝化生物滤池进水COD/TN为3.0时,出水TN的浓度降低到8~9 mg.L-1的范围,去除率稳定在79%~81%.  相似文献   

5.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

6.
高氮城市生活垃圾渗滤液短程生物脱氮   总被引:5,自引:2,他引:5  
采用"两级UASB-缺氧-好氧系统"处理高COD与高NH4 -N的城市生活垃圾渗滤液.180天的试验结果表明:UASB1(一级UASB)与UASB2(二级UASB)最大COD去除速率分别为12.5、8.5 kg·m-3·d-1,UASB1的NOx--N的最大去除速率为3.0 kg·m-3·d-1.系统COD去除率为80%~92%,出水COD为800~1500 mg·L-1.原渗滤液的NH 4-N为1100~2000 mg·L-1,A/O工艺的最大NH4 -N去除速率为0.68kg·m-3·d-1;在17~30℃,通过NO-2-N累积率为90%~99%的短程硝化,NH4 -N的去除率在99%左右,出水NH4 -N小于15 mg·L-1.回流处理水和二沉池回流污泥中的NOx--N分别在UASB1和A/O工艺的缺氧段实现完全反硝化,使系统无机氮TIN去除率达80%~92%.同时高效的反硝化为硝化提供了充足的碱度,使A/O工艺pH大于8.5,维持较高的游离氨浓度,结果表明,高游离氨(FA)是导致短程硝化的主要因素.以pH作为控制参数调控A/O工艺的曝气时间,可以有效的抑制亚硝酸盐氧化菌(NOB)的增长,实现种群优化和稳定的短程硝化.  相似文献   

7.
间歇曝气连续流反应器同步硝化反硝化除磷   总被引:4,自引:4,他引:0  
采用连续流反应器处理生活污水,保持厌氧段格室为3格,将缺氧段格室从2格减少至0格,好氧段格室由5格逐渐增加至7格,Run1时对好氧段格室采用连续曝气,Run2~Run4时采用间歇曝气.曝/停比分别为:40 min/20 min、40 min/30min、40 min/40 min,硝化液回流比从150%逐渐减少至0%. Run4时,平均进水COD、NH+4-N、TN、PO_4~(3-)-P浓度分别为259. 34、60. 26、64. 42、6. 10 mg·L-1,出水COD、NH+4-N、TN、PO_4~(3-)-P分别为26. 40、1. 03、5. 84、0. 30 mg·L-1.反应器对氮素的去除量从Run1时的192. 30 mg·h-1逐渐增加至Run4时的244. 00 mg·h-1,相应地去除率从65. 40%逐渐增大至95. 30%;从Run1~Run4,反硝化聚磷菌和聚磷菌的活性分别从36. 05%和38. 20%增大至140. 50%和133. 40%;通过间歇曝气在连续流反应器中实现了同步硝化反硝化除磷脱氮,为污水处理厂提标改造提供参考.  相似文献   

8.
曝气量及COD浓度对SBBR同步硝化反硝化效能的影响   总被引:2,自引:0,他引:2  
采用悬浮球形填料,以人工模拟生活污水为原水,研究了曝气量及进水COD浓度对序批式膜生物反应器(SBBR)内同步硝化反硝化(SND)效能的影响。试验结果表明,在0.025~0.070 m3/h的曝气量范围内,SBBR的COD及NH4+-N去除率都能达到90%左右,COD和NH4+-N的降解过程具有时序性,即曝气初期以COD降解为主,待COD降解基本完成后,NH4+-N降解速率才明显提高。SBBR内同步硝化反硝化效率与曝气量成反比,即曝气量越低,TN去除率越高;当曝气量为0.025 m3/h时,TN去除效率最高,达到73.26%。在200~700 mg/L的进水COD浓度范围内,COD去除率始终维持在90%左右,TN去除率随着进水COD浓度增加呈现先升高后降低的变化趋势。  相似文献   

9.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

10.
供氧充足环境下SBBR实现短程硝化的控制研究   总被引:2,自引:0,他引:2  
在供氧充足条件下对序批式生物膜反应器SBBR实现短程硝化的途径和机理进行研究.以垃圾渗滤液为处理对象,控制反应器主要环境参数为:溶解氧(DO)5mg/L, pH7.0,温度(t)25℃,采用全排水方式,进水周期为12h.通过数学推导和模型分析,确定以游离氨FA、C02和HN02浓度为直接控制因素,进水周期为间接控制因素,在SBBR反应器中实现了有效的短程硝化.结果表明,在氨氮NH ,4-N容积负荷0.52kg/(m3·d), NaHCO3浓度1.5mg/L的进水条件下, NH 4-N转化率达到89%, NO-2-N积累率达到83%,短程硝化作用显著.由此得出FA浓度是供氧充足情况下实现亚硝态氮NO-2-N积累的关键因素, CO2作为氨氧化细菌AOB的碳源,则具有进一步提升反应器性能的作用.  相似文献   

11.
采用批式厌氧消化以及间歇曝气的摇瓶试验进行猪场废水厌氧-好氧处理,研究了猪场废水厌氧消化对好氧后处理的影响,以及控制厌氧消化进程改善猪场废水厌氧消化液好氧后处理性能的可行性.对猪场废水原水(厌氧消化0d)直接进行好氧处理,COD和NH4 -N去除率分别可达到95%和98%以上,出水COD低于300mg·L-1,NH4 -N低于10mg·L-1.对厌氧消化液进行好氧后处理,出水COD和NH4 -N浓度随好氧处理时间的增长逐渐升高,厌氧消化前处理时间越长,升高时间越早,幅度越大.实验结束时,出水COD基本在500-600 mg·L-1之间;厌氧消化3、6、9、12d的消化液好氧后处理出水的NH4 -N分别达到22.2、105.4、147.6、171.4 mg·L-1.尽管厌氧消化3d时,COD去除率只有47.5%,但消化液好氧后处理的效能仍然没有提高,只是系统恶化的时间略迟于厌氧消化6、9、12d的消化液.厌氧消化液好氧后处理效果差的原因主要是:在厌氧消化过程中,各污染物降解的差异导致了厌氧消化液可生化性降低以及碳、氮、磷比例失调,影响了好氧后处理过程微生物的生长;厌氧消化液中缺乏易降解有机物,导致反硝化效果差,产生的碱度不能弥补硝化过程消耗的碱度,引起pH下降,进而影响了微生物活性.因此,通过缩短厌氧消化时间的方式来改善消化液好氧后处理的性能是不可行的.  相似文献   

12.
厌氧-好氧-缺氧短程硝化同步反硝化除磷工艺研究   总被引:4,自引:0,他引:4  
构建了主要由厌氧-好氧-缺氧构成的短程硝化同步反硝化除磷工艺,并在常温条件下用于生活污水的处理.研究发现,通过调节反应器内好氧区的pH(8.2~8.7)和溶解氧(DO为3~5mg·L-1)能实现该工艺的快速启动,在好氧区内实现亚硝酸盐的累积.在稳定运行期内,DO是影响短程硝化的主要影响因素,好氧1区DO控制在1.5~2.0mg·L-1,好氧2区DO控制在0.5~1.0mg·L-1,好氧区内亚硝酸盐氮累积浓度稳定在5~10mg·L-1,氨氮去除率达到90%以上.各反应单元内碳源、硝酸盐和亚硝酸盐对除磷贡献的研究表明,该工艺的缺氧段实现了在不外加碳源的情况下以亚硝酸盐和硝酸盐共同作为电子受体的反硝化除磷,反硝化除磷量占系统总除磷量的80%以上.  相似文献   

13.
曲洋  张培玉  于德爽  郭沙沙  杨瑞霞 《环境科学》2010,31(10):2376-2384
研究了异养硝化-好氧反硝化菌应用于短程硝化系统的可行性.采用生物强化技术将4株高效异养硝化-好氧反硝化菌投入耐盐短程硝化污泥中,考察了其对含海水污水的SBR短程硝化系统的强化效果,并比较了强化系统与原系统的差异性.结果表明,强化系统的NO2--N最大积累量比原系统降低34.92%,而且到达NO2--N最大积累量的时间比原系统提前2h.强化系统的TN和COD在硝化段中后期持续降低,硝化结束时其TN和COD去除率比原系统高出15.24%和5.39%,NH4+-N去除率和亚硝化率比原系统高出6.85%和14.47%.强化系统的pH比原系统高0.46,而ORP低25.84mV.强化系统的性能提升是由强化菌的异养硝化作用和好氧反硝化作用引起的.当受到70%海水盐度冲击时,强化系统的稳定性高于原系统,强化菌的加入有效地抑制了系统从短程硝化向全程硝化转变的趋势.在强化系统与原系统运行的各阶段,强化菌种的数量发生了变化,且随着系统排泥强化菌大量流失.本研究为异养硝化-好氧反硝化菌应用于短程脱氮系统的可行性提供了理论参考.  相似文献   

14.
应用新型自动呼吸-滴定测量仪在线测量pH值、HPR等信号,进行了在SBR内实现短程脱氮的研究.采用SBR处理人工合成废水,COD和NH4+-N浓度分别为360,40mg/L,温度稳定在20℃,DO低于2mg/L,基于HPR在线监测控制SBR曝气历时.运行约60d后,亚硝酸盐积累率达到88%,COD和NH4+-N去除率均在90%以上,稳定实现了短程硝化反硝化.应用HPR估计硝化过程的NH4+-N浓度发现,NH4+-N实测值与基于HPR的计算值间存在良好的线性关系,相关系数为0.9722;计算值整体低于实测值,主要是由曝气初期的滴定启动滞后所致.  相似文献   

15.
An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population.  相似文献   

16.
采用淹没式膜法水解-交替脉冲曝气系统对城市污水的处理效能进行研究,讨论了装置进水COD浓度变化对生活污水处理效果的影响、处理工艺沿程COD、NH3-N浓度变化状况、NH3-N的去除、水解对COD去除效果的影响以及进水COD/N比与反硝化的关系。研究表明,该系统能有效地去除COD和NH3-N。进水COD在450mg/L以下时,出水COD基本维持在60mg/L以下;进水NH3-N<50mg/L时,出水NH3-N<10mg/L。  相似文献   

17.
针对现有制革废水处理工艺难以使氨氮达标排放的问题,引入多段A/O工艺(MAOP)作为制革废水二级生物处理单元,探讨分段进水、水力停留时间(HRT)以及污泥回流比(R)对其COD和氨氮同步去除的影响.结果证明,无论是否分段进水,四段MAOP对制革废水一级生化出水均有良好的COD去除效果,当污泥停留时间(SRT)为18d、HRT不小于24h时,其出水浓度都可保持在300mg/L以下,满足GB8978-1996二级排放标准.在各段进水比为4:3:2:1、R 100%、HRT 48h、SRT 18d条件下,MAOP对制革废水一级生化出水的氨氮去除率高达97.7%,出水浓度3.6mg/L左右,达到GB8978-1996一级排放标准.MAOP同时具备反硝化、短程硝化反硝化、同步硝化反硝化等多种脱氮机制,是一种颇具前景的制革废水生物脱氮技术.  相似文献   

18.
针对现有制革废水处理工艺难以使氨氮达标排放的问题,引入多段A/O工艺(MAOP)作为制革废水二级生物处理单元,探讨分段进水、水力停留时间(HRT)以及污泥回流比(R)对其COD和氨氮同步去除的影响.结果证明,无论是否分段进水,四段MAOP对制革废水一级生化出水均有良好的COD去除效果,当污泥停留时间(SRT)为18d、HRT不小于24h时,其出水浓度都可保持在300mg/L以下,满足GB8978-1996二级排放标准.在各段进水比为4:3:2:1、R 100%、HRT 48h、SRT 18d条件下,MAOP对制革废水一级生化出水的氨氮去除率高达97.7%,出水浓度3.6mg/L左右,达到GB8978-1996一级排放标准.MAOP同时具备反硝化、短程硝化反硝化、同步硝化反硝化等多种脱氮机制,是一种颇具前景的制革废水生物脱氮技术.  相似文献   

19.
COD负荷对MBSBBR脱氮除磷性能的影响研究   总被引:1,自引:0,他引:1  
以模拟废水为处理对象,采用一套特定的MBSBBR系统,研究了COD负荷率对COD和NH4+-N去除率的影响,验证并分析了系统的SND现象。实验结果表明:COD负荷率为2.88~4.96kg/(m3·d)时,NH4+-N的去除率在70%左右,TP去除率在85%左右。系统对有机物具有良好的去除能力,可以承受较高的有机负荷率。系统中存在SND现象,反硝化菌大量存在,反硝化过程的碳源主要来自生物膜。系统的污泥产率较低,随着COD负荷率的增大而略有提高。  相似文献   

20.
取自强化A/O工艺处理合成氨废水中试装置的活性污泥,在pH、碳源和温度均不为限制性因素条件下,短程反硝化和全程反硝化均为零级反应.结果表明,相对于全程反硝化,短程反硝化可以节约14.1%的碳源和55.7%的反硝化时间;初始NO2--N为36.82 mg.L-1时反硝化最快,比反硝化速率(以NO2--N/VSS计)为0.509 g.(g.d)-1;pH为7.5时反硝化速率最快,实际运行中应避免缺氧区pH〉9;选择性增殖的反硝化菌对甲醇和乙醇形成了良好的适应性,却对葡萄糖和乙酸等其它低分子易降解有机物产生了不适应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号