首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Protein ubiquitination regulates many aspects of plant development and stress response. The RING-finger type E3 ubiquitin ligase SDIR1 (salt and drought induced ring finger 1) gene plays a key role in plant stress response. In this study, the full-length cDNA and the promoter sequences of CsSDIR1 were isolated from tea plants using the RT-PCR technology, and its bioinformatics characteristics were systematically analyzed. The expression patterns of CsSDIR1 in various tissues and in response to cold, drought, salt, and ABA treatments were also investigated by quantitative real-time RT-PCR (qRT-PCR). The sequence of CsSDIR1 contains a complete open reading frame of 831 bp, coding for a 276-long amino acid protein with a molecular weight of (Mr) 30.085 × 103 and a theoretical isoelectric point of 6.54. CsSDIR1 was predicted to be a hydrophobic protein localized on the intracellular membranes. The analysis of the amino acid sequence characteristics showed that CsSDIR1 contains two putative transmembrane domains at the N-terminus and a C3H2C3 RING-finger domain at the C-terminus; it shares high similarity with other plants' SDIR1, and has the closest relationship to Actinidia sinensis. A cis-acting regulatory elements prediction showed that the CsSDIR1 promoter contains many cis-acting elements, especially drought and salt stress response elements. The qRT-PCR analysis indicated that the CsSDIR1 gene has a high expression level in stems, followed by roots, leaves, and flowers; the expression of the CsSDIR1 gene is up-regulated by ABA, salt, and drought treatments, whereas it is down-regulated in response to cold stress. These results demonstrated that the CsSDIR1 gene might be involved in the plant stress response of tea trees. © 2018 Science Press. All rights reserved.  相似文献   

3.
4.
5.
6.
Dissolved organic matter (DOM) plays an important role in heavy metal speciation and distribution in the aquatic environment especially for eutrophic lakes which have higher DOM concentration. Taihu Lake is the third largest freshwater and a high eutrophic lake in the downstream of the Yangtze River, China. In the lake, frequent breakout of algae blooms greatly increased the concentration of different organic matters in the lake sediment. In this study, sediment samples were collected from various part of Taihu Lake to explore the spatial difference in the binding potential of DOM with Cu. The titration experiment was adopted to quantitatively characterize the interaction between Cu(II) and DOM extracted from Taihu Lake sediments using ion selective electrode (ISE) and fluorescence quenching technology. The ISE results showed that the exogenous DOM had higher binding ability than endogenous DOM, and DOM derived from aquatic macrophytes had a higher binding ability than that derived from algae. The fluorescence quenching results indicated that humic substances played a key role in the complexation between DOM and Cu(II) in the lake. However, because of the frequent breakout of algae blooms, protein-like matters are also main component like hnmic matters in Taihu Lake. Therefore, the metals bound by protein-like substances should be caused concern as protein-like substances in DOM were unstable and they will release bound metal when decomposed.  相似文献   

7.
The experiments were conducted to investigate the tolerance and enrichment capabilities by elucidating the physiological response and cadmium impact on iron and potassium accumulation amounts of brassica rape hairy roots under different cadmium concentrations by using liquid suspension culture method. The results showed the following. (1) The growth of hairy roots was not significantly different under low cadmium concentrations (below 100 μmol/L), whereas it was obviously inhibited under high cadmium concentrations (more than 100 μmol/L). Further, the maximum fresh weight of brassica rape hairy roots reached 4.34 g under 25 μmol/L cadmium stress after 7 days. (2) The content of ROS in brassica rape hairy roots increased with increasing concentrations of cadmium; the antioxidant enzyme activities of brassica rape hairy roots (SOD, POD, and CAT) decreased first and then increased with increasing cadmium concentrations under 1-day stress, whereas showed an opposite trend under 7-day stress. (3) PI staining and MDA content indicated that cellular damage was more serious with increasing cadmium concentrations. (4) With the increase of cadmium concentrations, cadmium content of hairy roots increased and reached maximum of 2.97 mg/g under 400 μmol/L cadmium stress after 7 days. The iron content also increased significantly with the maximal weight of 14.52 mg/g after 1-day cadmium stress, whereas no significant difference was noted under 7-day cadmium stress. The potassium content under 7-day cadmium stress was 1.6 times of that after 1-day stress (15.73 mg/g). The study showed that the physiological response of Brassica rape hairy roots was correlated with the concentration and time of cadmium stress. Moreover, cadmium stress caused metabolic disorders of iron and potassium in the hairy roots, but the hairy roots of Brassica rape had better enrichment effect on cadmium. © 2018 Science Press. All rights reserved.  相似文献   

8.
Wild rodents were collected using live snap traps in pistachio gardens of Kerman Province, Southeast Iran from 2007 to 2009, then some physiological parameters of them were measured. The samples were identified as follow: Nesokia indica, Meriones persicus, Meriones lybicus and Tatera indica. Blood samples were obtained from the heart, then the blood parameters (glucose, cholesterol, triglyceride, total protein, HDL, red and white blood cell number) in wild species of rodents and laboratory rat were compared. The results showed that there were no significant differences in serum glucose, triglyceride, HDL and total protein levels among different experimental groups. The concentration of cholesterol in T. indica was more than that in N. indica (P < 0.01). The total numbers of red blood cells also showed significant difference between wild garden rodent species and laboratory rat (P < 0.01), while the numbers of white blood cells showed no significant difference.  相似文献   

9.
Geosmin is a secondary metabolite responsible for earthy odors. The occurrence of geosmin has great impact on the quality of water environment. The gene essential for geosmin biosynthesis have been identified in several species. But little is known about the mechanism of geosmin synthesis in Aphanizomenon gracile. This study attempted to clone the gene involved in geosmin biosynthesis of Aphanizomenon gracile a nd a nalyze t he geosmin production u nder d ifferent e nvironments. T he high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) was used to amplify the full-length of geosmin synthase gene from Aphanizomenon gracile (WH-1). Real time PCR (RT-PCR) was applied to quantify the geosmin production in different light and temperature. As a result, geo, a geosmin synthase gene from Aphanizomenon gracile (WH-1) was cloned by hiTAIL-PCR. The full-length open reading frame (ORF) of geo was 2 262 bp, coding for a protein of 753 amino acids. Meanwhile, WH-1 was treated with different environment conditions and mRNA expression levels of geo were quantified by RT-PCR. It was found that low temperature (15 °C), high light intensity (35 μmol m-2 s-1) and continuous light illumination were beneficial to the expression of geo. The successful amplification of geosmin synthase gene verified that hiTAIL-PCR is an effective and simple procedure of low cost. The result provides fundamental knowledge on the monitoring and prevention for odorants.  相似文献   

10.
To provide scientific support for the rational development and utilization of thermal resources and avoid climate risks, the distribution of thermal resources in Qinghai-Tibet Plateau in the context of climate change was analyzed in this study. Based on meteorological data from 1961 to 2020 at 149 stations in Qinghai-Tibet Plateau, the changes in thermal resources over the past 50 years were analyzed using inclination rate analysis and Mann-Kendall inspection, combined with JAVA and Python programming. The results showed that: (1) the annual average temperature in Qinghai-Tibet Plateau shows an obvious warming trend, and the temperature increases greatly after the 1990s, with the climate tendency rate from 1961 to 2020 reaching 0.298 ℃/10 a. (2) The accumulated temperature and lasting days steadily above 0 ℃, 5 ℃ and 10 ℃ increased significantly, and the accumulated temperature increases were not entirely determined by the duration of the lasting days. (3) The beginning dates of accumulated temperature steadily above 0 ℃, 5 ℃, and 10 ℃ were generally advanced, while the deadlines were delayed, and the trend of early start dates was stronger than that of deadlines. In conclusion, this study shows that, in the context of global warming, thermal resources in Qinghai-Tibet Plateau have undergone substantial changes, which will play an important role in the introduction and extension of crops. © 2022 Science Press. All rights reserved.  相似文献   

11.
The purpose of this study was to give a worldwide overview of the concentrations of typical estrogenic endocrine disrupting chemicals (EDCs) in the effluent of sewage plants and then compare the concentra- tion distribution of the estrogenic EDCs in ten countries based on the survey data of the estrogenic EDCs research. The concentrations of three main categories (totally eight kinds) of estrogenic EDCs including steroidal estrogens (estrone (El), estradiol (E2), estriol (E3) and 17a- ethynylestradiol (EE2)), phenolic compounds (nonylphe- nol (NP) and bisphenol A (BPA)) and phthalate esters (dibutyl phthalate (DBP) and dibutyl phthalate (2- ethylhexyl) phthalate (DEHP)) in the effluents of sewage plants reported in major international journals over the past decade were collected. The statistics showed that the concentration distributions of eight kinds of EDCs were in the range of ng·L^-1 to μg·L^-1. The concentrations of steroidal estrogens mainly ranged within 50.00 ng. L-1, and the median concentrations of El, E2, E3 and EE2 were 11.00, 3.68, 4.90 and 1.00 ng·L^-1, respectively. Phenolic compounds and phthalate esters were found at pg. L-1 level (some individual values were at the high level of 40.00 μg·L^-1). The median concentrations of BPA, NP, DBP and DEHP were 0.06, 0.55, 0.07 and 0.88 μg·L^-1, respectively. The concentrations of phenolic compounds and phthalate esters in the effluents were higher than that of steroids estrogens. The analysis of the concentration in various ten countries showed that steroids estrogens, phenolic compounds and phthalate esters in sewage plant effluents were detected with high concentration in Canada, Spain and China, respectively.  相似文献   

12.
In this study, three rice varieties, Byou268 (low light-sensitive type), Nei5you768 (intermediate type), and Yixiangyou1108 (low light-tolerant), were used as experimental materials to investigate the yield and quality responses of different rice varieties to low light stress under normal light (CK) and low light (SH). The results showed the following: (1) Compared with normal light, the decrease in Yixiangyou1108’s 1 000-grain weight, grain number per spike, and seed setting rate under low light treatment were much lower than those of Nei5you768 and Byou268. The yield decline of Yixiangyou1108 (46.5%) was significantly lower than that of Nei5you768 (56.5%) and Byou268 (69.8%). Yixiangyou1108 showed strong tolerance to low light stress in terms of 1 000-grain weight, seed setting rate, grain number per panicle, and yield. (2) Compared with normal light, the reduction in grain length and width of Yixiangyou1108 under low-light treatment was significantly greater than that of Byou268; however, the reduction in the length-width ratio did not reach a significant level. The amylose content and gel consistency of the rice were significantly reduced. The reduction in amylose content of Yixiangyou1108 (24.5%) was significantly lower than that of Nei5you768 (28.1%) and Byou268 (30.6%); however, the decrease in gel consistency of Yixiangyou1108 (14.7%) was significantly higher than that of Nei5you768 (9.8%) and Byou268 (8.1%). After low light treatment, the characteristic values of the RVA curve of rice changed. The peak viscosity and breakdown viscosity of Yixiangyou1108, Nei5you768, and Byou268 were significantly decreased, but the cold glue viscosity and setback viscosity were significantly increased, while there was no significant difference in the peak time and peak temperature. The response of 1 000-grain weight, grain number per spike, and seed setting rate under low light stress can be used as a yield index of rice breeding with low light tolerance; rice grain type, amylose, and gel consistency; and peak viscosity and hot paset viscosity in RVA characteristic values can be used as quality indexes of low-light-tolerant rice material breeding. © 2022 Science Press. All rights reserved.  相似文献   

13.
To investigate effects of phosphorus content on Cr(VI) sorption onto phosphorus-rich biochar, sewage sludge of different phosphorus concentrations from 4 to 60 mg.g-1 by dry weight were prepared and carbonized to make biochar for batch sorption experiments. Test results revealed that different phosphorous concentration of raw sludge had respective impacts on surface area, pore surface area, average pore diameter and pH value of derived biochar. The adsorption kinetics of phosphorus-rich biochar could be described by the pseudo-second-order model. The sorption isotherm data followed Langmiur model better than Freundlich model. Biochar produced from sludge with phosphorus concentration of 20 mg. gl gave the largest chromium sorption capacity, which could be attributed to its largest surface area and pores surface area comparing with those of'biochars from sludge with other phosphorus concentrations. The chromium loaded biochar was analyzed using Fourier Transform Infrared Spectroscopy and X-ray Diffraction measurement. The results indicated that chemical functional groups hydroxyl and methyl on surface of biochar were involved in Cr(VI) binding and its reducing to Cr(III). Then, a portion of Cr (III) in form of various phosphate precipitates was bound onto biochar surface and the rest was released into the solution. The experimental results suggested that phos- phorus played an important role in pore and surface area development of sludge biochar during pyrolytic process. It also could react with Cr(III) on the biochar surface that impacted on capacity of Cr(VI) removal from solution by sludge biochar. Therefore, phosphorus concentration in sludge should be considered when sludge pyrolytic residue would be reused for heavy metals sorbing.  相似文献   

14.
Cadmium (Cd2+) pollution in an aquatic environment can negatively affect certain reproductive parameters of aquatic animals. β-N-acetyl-D-glucosaminidase (NAGase) is considered to play an important role in the fertilization process. The aim of the present study was to investigate the effect of Cd2+ on the activity of NAGase purified f rom the testis of Nile tilapia, toward contributing new knowledge on the breadth of negative effects of Cd2+ for Nile tilapia production. The kinetic method of substrate reaction was used for this assessment, and an inhibitory model was established to study the kinetics of NAGase under inhibition by Cd2+. The results showed that Cd2+ could reversibly inhibit the enzymatic activity of NAGase, and the half-maximal inhibitory concentration was estimated to be 40.95 mmol/L. Cd2+ was found to be a competitive inhibitor of NAGase, and the inhibitory constant was determined to be 17.13 mmol/L. The microscopic rate constants of inactivation were also determined. Together, these findings demonstrate that Cd2+ is a reversible inhibitor that can competitively inhibit NAGase. These results may provide a theoretical foundation for further studies on the reproduction of tilapia. © 2018 Science Press. All rights reserved.  相似文献   

15.
Surfactants may alter the interaction between engineered nanoparticles (ENP) and coexisting pollutants, and further influence the ecotoxicity of these pollutants. This research aimed to evaluate the impacts of the surfactant sodium dodecyl benzene sulfonate (SDS) on the ecotoxicological effects of TiO2-NP and Cd combined contamination in freshwater sediments by deposit-feeding gastropoda Bellamya aeroginosa. We investigated the effects of TiO2-NP and/or Cd contamination in the presence of different concentrations of SDS on DNA damage, Na+, K+-ATPase activities, malondialdehyde (MDA) levels, and protein carbonyl (PCO) levels in the hepatopancreas of B. aeroginosa following 21-d chronic sediment bioassay. The results showed that low concentration (5 μg g-1) of Cd had no toxicity to B. aeroginosa, while relatively high concentration (25 μg g-1) displayed obvious toxicity, and that SDS could significantly enhance the toxicity of Cd to B. aeroginosa. TiO2-NP with nontoxic concentration could enhance the toxicity of Cd with low concentration to B. aeroginosa, but had no effects on the toxicity of Cd with high concentration. SDS could significantly enhance the toxicity of TiO2-NP and Cd combined contamination to B. aeroginosa in a SDS-concentration-dependent manner. When assessing the potential environmental risk of ENP, we should not only focus on the toxicity of ENP itself, or the interaction between ENP and coexisting contaminants, but also should consider the potential impacts of surfactants and other environmental factors.  相似文献   

16.
Soit carbon (C) stock is the largest C pool in terrestrial ecosystems, and the emission of CO2 through soil respiration contributes to the majority of soil C expenditure and atmospheric C. Soil respiration is also one of the major processes controlling the C budget of terrestrial ecosystems. A slight change in soil CO2 emission might cause drastic variations in global C balance. Therefore, it is of great significance to investigate the characteristics of soil respiration of soils growing different types of vegetation over a long period, and determine its relationship with variables such as soil temperature and moisture. The rate of soil respiration was measured each month in the growing seasons (from April to October) of 2011, 2013, and 2014 using the Li-8100 CO2 flux measurement system in the central Loess Plateau. Four types of vegetation (Quercus liaotungensis, Platycladus orientalis, Robinia pseudoacacia, and a natural shrub) were chosen for the periodical measurements. A permanent sample plot was established for each type of vegetation, and five polyvinyl chloride (PVC) collars were placed in each plot for the measurements. The temperature and water content of the soil in the upper 12 cm near the collar were measured using a digital soil temperature probe and a TDR 200 soil moisture meter at the same time when the soil respiration was measured. The soil respiration rates were fitted to the soil temperature and moisture with an exponential function, power function, linear function, and an equation combining the two variables. The results showed that: (1) the seasonal variation in the rates of soil respiration in the soils growing the four types of vegetation were almost the same, and were lower in the earlier period and then increased to high levels in the middle and later periods; (2) the rates of soil respiration in the same month varied with the type of vegetation grown, and were in the descending order: Q. liaotungensis > P. orientalis > shrub > R. pseudoacacia; (3) the average values of the rates of soil respiration in 2011, 2013, and 2014 were 2.77, 3.48, and 5.08 μmol m-2 s-1, respectively. The variation in soil respiration was higher across the three years than the variation for the types of vegetation grown; and (4) the rate of soil respiration was positively correlated to soil temperature and moisture for all the types of vegetation. A better fit was obtained by using the equation that included both the variables, soil temperature and moisture, than by an equation that included a single factor. Our results suggested that both seasonal and inter-annual variations of soil respiration occurred in the soils growing the four types of vegetation in the region. The temperature and water content of soils are the major regulating factors, and soil respiration in the Loess Plateau is more greatly affected by environment factors than by the type of vegetation. © 2018 Science Press. All rights reserved.  相似文献   

17.
Nitrogen (N) loss in irrigated croplands from coupled nitrification and denitrification shows considerable differences due to differences in soil properties and agricultural management practices. Previous research has demonstrated that soil physicochemical properties strongly affect nitrification and denitrification capacities of cropland soils. However, existing research on soil nitrification and denitrification following the conversion of native desert soils to irrigated croplands lacks long-term tracking and monitoring capabilities. Therefore, six types of reclamation years of irrigated croplands and uncultivated sandy land in the Hexi Corridor marginal oasis in northwestern China were selected for study, and the differences in soil nitrification and denitrification rates and physicochemical properties were studied over 42 sites in the desert-oasis ecotone derived from seven reclamation sequences, including the years of 0, 15, 30, 50, 80, 100, and 150. The results showed that the nitrification and denitrification rates of soil first increased and then decreased with the increase in reclamation years. The highest soil nitrification rate and denitrification rate were observed at 80 years of cultivation (101.4 μg g-1 d-1) and 100 years of cultivation (0.93 μg g-1 d-1), respectively. In addition, the soil nitrification and denitrification rates in the natural sandy land were significantly lower than those in the cultivated croplands (P < 0.05). There were significant correlations among soil nutrients, soil moisture, and soil particle size composition between the nitrification and denitrification rates (P < 0.05). Regression analysis showed that environmental variables accounted for 69.7% and 75.7% of the variation in nitrification and denitrification rates, respectively. Among them, organic matter content, pH, soil moisture, and NH4+-N content were the key factors affecting the change in soil denitrification rate, while organic matter content, NO3--N, pH, and clay content were the key factors affecting the change in soil denitrification rate. © 2022 Science Press. All rights reserved.  相似文献   

18.
To investigate the bacterial community structure features of soak solutions used to preserve bamboo slips that were excavated from Han dynasty tomb located in Laoguanshan of Chengdu and to reveal the diversity of bacteria in these soak solutions, PCR-DGGE was employed. Subsequently, the major DGGE bands were excised and sequenced to analyze the phylogeny of bacteria. The richness (S), Shannon-Wiener index (H), and Simpson index (D) of deionized water (0#) without the soaked bamboo slips were higher than those of the other samples. Among the bamboo slip soak solution samples, there were significant differences in these indicators; the bacterial genetic diversity of sample 121# was the highest and that of sample 1# was the lowest. Principal Component Analysis (PCA) showed that there were comparatively large differences among the samples, and the similarity between sample 1# and others was the lowest. Based on the sequence analysis, the major community of bacteria in soak solution were belonged to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, including Cupriavidus, Aquabacterium, Comamonas, Albidiferax, Hyphomicrobiaceae, Azospirillum, Nevskia, Streptococcus, Staphylococcus, Sediminibacterium, and Propionibacterium, among which Cupriavidus of the β-Proteobacteria class was detected in all samples. The bacterial community structure of the soak solutions that were collected from different bamboo slips was quite complex and significantly different. The analysis of the main bacterial community revealed the potential bacteria species that may trigger the damage in bamboo slips; the result provided a reference to prevent waterlogged bamboo slips from microbial diseases in the future. © 2018 Science Press. All rights reserved.  相似文献   

19.
The uterotrophic assay has been commonly used to test environmental estrogens in vivo, however, it is often not sensitive enough sometimes. An alternative way is to evaluate estrogenicity through biomarker genes. MicroRNA (miRNA) is a class of regulatory gene, which has been shown to be a good biomarker for many diseases and toxicological effects in recent years, and some evidences showed that estrogen induced response was partially mediated by miRNAs. In this study, two types of microarrays were used to test the 17[3-estradiol (E2) induced miRNA expression profile at different time points in the immature mouse uterus. Statistical analysis showed the aldehyde slide based array had less variation than the amino slide based array, and 11 dysregulated miRNAs were screened out for significant fold change. Real-time PCR was performed to further confirm that 4 out of 7 selected miRNAs, namely miR-451, miR-155, miR-335- 5p, and miR-365, are E2 regulated miRNAs in the uterus. The function of the predicted targets of these miRNAs is involved in cell grow control, which is consistent with the main E2 function in the uterus. MiR-451 had similar strong responses to E2 in the uterus of both immature and overiectomized mice, and could be a potential biomarker for estrogenicity in the uterus.  相似文献   

20.
To determine the characteristics of vegetation community structure and the relationship between species in the frequent watersheds of debris flow in fragile ecological environments, based on sample survey and 2 × 2 joint table techniques, we used analysis of variance test, χ2 test, Jaccard index, Pearson correlation coefficient, and Spearman's rank correlation coefficient test to study the main plant species correlations in the stable zone, instable zone, and deposit zone of the unstable slope. The analysis of variance test showed that all 45 species pairs had a significant negative correlation in the stable zone and instable zone, whereas there was no significant negative correlation in the deposit zone, which showed that the species had an independent distribution trend. The results from the different tests showed that there were 1 pair, 4 pairs, and 4 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association under the χ2 test and the ratios of positive correlation pairs to negative correlation pairs were 0.55, 0.67, and 0.67 in the stable zone, instable zone, and deposit zone, respectively. There were 8 pairs, 5 pairs, and 5 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association from the Pearson correlation analysis test, and the ratios of positive correlation pairs to negative correlation pairs were 0.36, 0.45, and 0.45 in the stable zone, instable zone, and deposit zone, respectively. There were 10 pairs, 6 pairs, and 9 pairs from the stable zone, instable zone, and deposit zone, respectively, which had significant interspecific association from the Spearman's rank correlation analysis test and the ratios of positive correlation pairs to negative correlation pairs were 0.5, 0.55, and 0.6 in the stable zone, instable zone, and deposit zone, respectively. The three test results showed general similarities but there were some differences. Most species pairs did not reach a significant level in the three zones and the number of negatively related species was more than the number of positively related species. In brief, this loose interspecific relationship indicates that the entire plant community was not stable, and the interspecific relationships among species are susceptible to environmental interference in the ecologically fragile areas of the debris flow basin. Therefore, rational selection and configuration of species should be applied to promote community structure development and ecological environmental improvement in vegetation restoration process areas with high-frequency debris flow. © 2018 Science Press. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号