首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg. L-1 phosphorus when the dosage of R-nZVl is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg. L-1. Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N2 method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.  相似文献   

2.
The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol. m-3 and different electrolyte species, such as type 1-1, type 2-1 and type 3-1. The Donnan steric pore model-dielectric exclusion (DSPM- DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9mol·m^-3). The results indicated that the dissociation of the hydro- philic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1-1 and type 2-1 electrolytes at dilute aqueous solutions (0.1-0.5 mol · m^3). However, for type 3-1 electrolyte, specific adsorp- tion should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.  相似文献   

3.
A series of activated carbons with high surface area were prepared from walnut shell using chemical activation with ZnCl2. In this research the carbonization stage was carried out at 500℃. The performance of the synthesized carbons evaluated in adsorption of benzene and toluene from waste gas. The influence of impregnation ratio on the characteristics of synthesized activated carbons as well as their adsorption capacity was investigated. The ratio of activation agent to walnut shell was selected in the range of 0.5-2.0 wt/wt. The synthesized activated carbons were characterized using XRD, SEM, BET and FTIR techniques. The highest activated carbon production yield was obtained at impregnation ratio of 1.5 wt/wt. The XRD analysis illustrated that peaks intensity decreased with increasing impregnation ratio showing that amorphous property of samples was increased. The SEM analysis revealed successful pore development in synthesized activated carbons obtained at high impregnation ratios. The surface area of the activated carbons increased with increasing impregnation ratio and its maximum value reached 2643 m2.g 1 at impregnation ratio of 2/1. FTIR analysis indicated that the relative amount of different acidic surface groups on synthesized carbons was a function of impregnation ratio. Experimental results for benzene and toluene adsorption showed a high potential of employing synthesized impregnated activated carbon for treatment of waste gas. Generally, the amount of VOC adsorbed on the surface was affected by physicochemical properties of synthesized activated carbons.  相似文献   

4.
High quality and low cost carbon can be prepared from Eupatorium adenophorum (E. adenophorum) and Buckwheat straw. The biosorbent was used for Cr(VI) removal. The effect of experimental parameters, such as pH, sorbent dosage and temperature were examined and the optimal experimental condition was determned. Solution pH is found influencing the adsorp- tion. Cr(VI) removal efficiency is found to be maximum (98%) at pH= 1. Langmuir and Freundlich adsorption isotherms were applicable to the adsorption process and their constants were evaluated. The adsorption data obtained agreed well with the Langmuir sorption isotherm model. The maximum adsorption capacities for Cr(VI) ranged from 46.23 to 55.19mg.g^-1 for temperature between 298 K and 308 K under the condition of pH = 1.0. Thermodynamic parameters such as free energy change (AG), enthalpy (AH) and entropy (AS) indicate a spontaneous, endothermic and increased randomness nature of Cr(VI) adsorption. Studies found that the raw E. adenophorum and buckwheat straw mixed materials with simple treatment had a high efficiency for the removal of Cr(VI) and would be a promising adsorbent.  相似文献   

5.
In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H202 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H202, Fe2, and initial pH were found to be 178 mg-g-1 VSS (volatile suspended solids), 211mg.gI VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton's reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.  相似文献   

6.
The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box- Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3℃, contact time of 63.8 min, and an adsorbent dosage 3.90 g· L-1. Under the optimized condi- tions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.  相似文献   

7.
A chlorbenzuron, diflubenzuron, and hexaflumuron-degrading bacterium strain M6, was isolated from the activated sludge of an insecticide factory. The strain was identified as Achromobacter sp. according to an analysis on the 16S rRNA gene sequences, morphological, and physiological characteristics. Strain M6 could degrade more than 91% of 100 mg/L chlorbenzuron, diflubenzuron, and hexaflumuron within 48 hours, which could act as the sole carbon source. Strain M6 showed more chlorbenzuron degradation at a temperature range between 25 and 40 ℃ and a pH range between 6.0 and 8.0. The optimal temperature and the initial pH of medium for chlorbenzuron degradation by strain M6 were 30 ℃ and 7.0, respectively; the maximum chlorbenzuron tolerated concentration of strain M6 was as high as 400 mg/L. Strain M6 hydrolyzed 4-acetaminophenol into a purple-red product. Moreover, an approximately 1.4 kb DNA fragment, which could be expressed into an amidase to degrade amide pesticides, was amplified from the genomic DNA of strain M6. The results preliminarily proved that 3 benzoylurea insecticides could be degraded because of strain M6 hydrolyzing their amide bonds. This study obtained a highly efficient degrading strain and provided new resources and valuable information on benzoylurea insecticide degradation. © 2018 Science Press. All rights reserved.  相似文献   

8.
Polyethylenimine (PEI)-modified chitosan was prepared and used to remove clofibric acid (CA) from aqueous solution. PEI was chemically grafted on the porous chitosan through a crosslinking reaction, and the effects of PEI concentration and reaction time in the preparation on the adsorption of clofibric acid were optimized. Scanning electron microscopy (SEM) showed that PEI macromolecules were uniformly grafted on the porous chitosan, and the analysis of pore size distribution indicated that more mesopores were formed due to the crosslinking of PEI molecules in the macropores of chitosan. The PEI-modified chitosan had fast adsorption for CA within the initial 5 h, while this adsorbent exhibited an adsorption capacity of 349 mg· g^-1 for CA at pH 5.0 according to the Langmuir fitting, higher than 213 mg· g^-1 on the porous chitosan. The CA adsorption on the PEI- modified chitosan was pH-dependent, and the maximum adsorption was achieved at pH 4.0. Based on the surface charge analysis and comparison of different pharmaceu- ticals adsorption, electrostatic interaction dominated the sorption of CA on the PEI-modified chitosan. The PEI- modified chitosan has a potential application for the removal of some anionic rnicropollutants from water or wastewater.  相似文献   

9.
To investigate the underlying mechanism of the unique phase transition behavior of SpyCatcher-ELPs40 (C-E) and the influence of the oligomerization domain on the phase transition of C-E, we constructed a non-covalent three-armed star oligomerization of C-E-F and E-F by fusing the Foldon (F) domain with SpyCatcher-ELPs40 (C-E) and ELPs40 (E). Results showed that the phase transition temperature of ELPs40 fused with Foldon was higher than that of ELPs120, whereas it was lower than those of ELPs40 and the SpyTag/SpyCatcher-mediated covalent three-armed elastin-like polypeptides (ELPs). This proved that the topology of ELPs could affect their phase transition behaviors. The phase transition temperature of C-E-F was 28.8 ℃ and 35.6 ℃ higher than those of C-E and ELPs40, respectively, although C-E-F had a similar sequence with C-E and ELPs40. When the concentration of NaCl was 0.8 mol/L, the differences in the phase transition temperatures were 41.2 ℃ and 47.1, respectively. We could only observe the phase transition of C-E-F in the Na2CO3 solution with high concentration (≥ 0.7 mol/ L); however, the phase transition could be clearly detected in the Na2SO4 solution, even when the concentration of Na2SO4 was very low. This result was obviously inconsistent with the Hofmeister series. This is the first report of non-linear ELPs that has shown this unique phase transition behavior. The possible reason was related to the charges distributed on the solvent accessible surface and the oligomeric state of C-E-F triggered by the Foldon domain. © 2018 Science Press. All rights reserved.  相似文献   

10.
A hydrocyclone using natural water head provided by bridge was operated for the treatment of stormwater runoff. The hydrocyclone was automatically controlled using electronic valve which is connected to a pressure meter. Normally the hydrocyclone was open during dry days, but it was closed after the capture of the first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure head was more than 2 m when the rainfall intensity was above 5mm·h^-1. The percentage volume of underflow with high solids concentration decreased as the pressure and flow rate increased, but the percentage volume of overflow with almost no solids showed the opposite behavior. The total suspended solids (TSS) concentration ratio between the overflow and inflow (TSSover/TSSin) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow (TSSunaer/TSSi,) increased. The TSS separation efficiency was evaluated based on a mass balance. It ranged from 25% to 99% with the pressure head ranging from 1.4 to 9.7 m, and it was proportional to pressure and flow rate. Normally, the efficiency was more than 50% when the pressure was higher than 2 m. The analysis of the water budget indicated that around 13% of the total runoff was captured by the hydrocyclone as a first flush, and this runoff was separated as underflow and overflow with the respective percentage volumes of 29% and 71%. The pollutants budget was also examined based on a mass balance. The results showed that the percentage of TSS, chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in underflow were 73%, 59%, 7.6%, and 49%, respectively. Thus, it can be concluded that the hydrocyclone worked well. It separated the first flush as solids-concentrated underflow and solids-absent overflow, and effectively reduced the runoff volume needing further treatment. Finally, four types of optional post treatment design are presented and compared.  相似文献   

11.
Study on effective disposal and utilization of sewage sludge has recently been the target of growing interest in China. However, potential risks are associated with the use of sludge due to its contamination with toxic organics, heavy metals and pathogenic microorganisms. In this study, a screening assessment was conducted on sewage sludge samples collected from 17 different sewage treatment plants in Beijing, based on a batch of in vitro bioassays, including a set of recombinant gene yeast assays for endocrine disruption, and an ethoxy resorufin-O- deethylase (EROD) assay using H4IIE cells for aryl hydrocarbon receptor (Ah-R) agonistic activities. Our results suggested that moderate levels of estrogen receptor agonistic activities (0.9 ng E2. g-1 to 6.8 ng E2. gl, dw), but relative higher androgen receptor antagonistic activ- ities (nd to 45%), progestin receptor antagonistic activities (nd to 80%) and Ah-R agonistic activities (1390 to 6740 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)·g-1, dw) were found in sewage sludge samples. However, there were no significant correlations between the toxic effects of sewage sludge and the sewage treatment processes. In addition, the 17β-estradiol (E2) equivalent quantity (EEQ) level of the sewage sludge was increased after the composting treatment, whereas the 2,3,7,8-tetrachlorodi- benzo-p-dioxin toxic equivalent quantity (TEQ) level of sewagesludge composted was much lower than that of sewage sludge.  相似文献   

12.
It is essential to determine the heavy metal concentrations in sewage sludge to select appropriate disposal methods. We conducted a national survey of heavy metal concentrations of sewage sludge samples from 107 municipal sewage treatment plants located in 48 cities covering the 31 provinces and autonomous regions, as well as Hong Kong, Macao and Taiwan by Xinjiang Production and Construction Corps in 2006, and identified the temporal trends of heavy metal contents in sewage sludge by comparison with surveys conducted in 1994-2001. In 2006, the average concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in sewage sludge were 20.2, 1.97, 93.1, 218.8, 2.13, 48.7, 72.3, and 1058mg.kg-1, respectively. Because of the decreased discharge of heavy metals into industrial wastewater in China and the increasingly stringent regulations governing the content of industrial wastes entering sewers, the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn have decreased by 32.3%, 49.7%, 54.9%, 25.0%, 37.2%, 44.8%, and 27.0%, respectively, during the past 12 years. The concentrations of Cd, Cr, Cu, Ni, and Zn in the samples exceeded the heavy metal limits of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant in China (GB 18918-2002) by 6.5%, 3.7%, 6.5%, 6.5%, and 11.2%, respectively. From these results, 85 of the 107 municipal sludges analyzed would be considered suitable for land application.  相似文献   

13.
Occurrence of odor problems in drinking water of major cities across China   总被引:1,自引:0,他引:1  
A comprehensive investigation into the occur-rence of odor problem at 111 drinking water treatment plants (DWTPs) in major cities across China was undertaken using both flavor profile analysis (FPA) and gas chromatography-mass spectrometry (GC-MS). Eighty percent of source water samples exhibited odor problems, characterized by earthy/musty (41%) and swampy/septic (36%) odors, while the occurrence rate was lower (45%) in the finished water. Source water from rivers exhibited more pollution-origin odors, such as the swampy/septic odor, while that from lakes and reservoirs exhibited more algae- origin odors, such as earthy/musty odors. The occurrence rate of 2-methylisoborneol (2-MIB) in the surface source water samples was 75%, with 7% of samples containing 2- MIB concentrations of over 10 ng.L-1. The earthy/musty odor in the lake/reservoir water samples was mainly caused by 2-MIB (linear regression coefficient, R2= 0.69), while the correlation between 2-MIB concentration and the earthy/musty odor intensity samples was weak (R2= 0.35) in the river-source water These results will be useful for the management of odor-quality problems in drinking water of China.  相似文献   

14.
Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102mW·m^2 (951mW·m^3) at current generation of 276mA·m^-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534mg · L^-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112Ω ) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm^-2.  相似文献   

15.
Variations of phosphorus (P) and its species in surface sediment of Baiyangdian Lake, a eutrophic shallow lake located in North China, were investigated through combination of field survey and numerical calculation based on cluster analysis. P fractionation was performed by a sequential extraction scheme, categorized as loosely bound P (NH4Cl-P), reductant soluble P (BD-P), metallic oxide bound P (NaOH-P), calcium bound P (HCl-P) and organic P (Org-P). P concentrations exhibited regional similarities and a total of four sub-areas were identified in which the same rank was HCl-P 〉 Org-P 〉 BD-P ,=NaOH-P 〉NH4Cl-E NH4Cl-P, BD-P and Org-P were found to contribute to P enrichment in overlying water column. Specifically, labile Org-P acted as a potential pool with a greater contribution in aerobic layer compared to anaerobic layer. A hysteresis (lag = 4 months) existed when labile Org-P concentration was negatively correlated with aerobic layer thickness. In view of magnitude of identified P contributors in sub-areas, higher potential of P release was present in Fuhe River and Tang River estuary areas. On the basis of calibration and verification, the mathematical model with parameter settings applied in this study was improved to serve as a tool for limnology management and eutrophic control.  相似文献   

16.
Precise and sensitive methods for the simultaneous determination of different classes of antibiotics, including sulphonamides, fluoroquinolones, macrolides, tetracyclines, and trimethoprim in surface water, sediments, and fish muscles were developed. In water samples, drugs were extracted with solid-phase extraction (SPE) by passing 1000 mL of water through hydrophilic lipophilic balanced (HLB) SPE cartridges. Sediment samples were solvent-extracted, followed by tandem SPE (strong anion exchange (SAX) + HLB) clean-ups. Fish muscles were extracted by a mixture of acetonitrile and citric buffer (80:20, v/v) solution, and cleaned by SPE. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) with multiple reaction monitoring (MRM) detection was employed to quantify all compounds. The recoveries for the antibiotics in the spiked water, sediment, and fish samples were 60.2%-95.8%, 48.1%-105.3%, and 59.8%- 103.4%, respectively. The methods were applied to samples taken from Dianchi Lake, China. It showed that concentrations of the detected antibiotics ranged from limits of quantification (LOQ) to 713.6 ng- L1 (ofloxacin) in surface water and from less than LOQ to 344.8 μg·kg-1 (sulphamethoxazole) in sediments. The number of detected antibiotics and the overall antibiotic concentrations were higher in the urban area than the rural area, indicating the probable role of livestock and human activities as important sources of antibiotic contamination. In fish muscles, the concentration of norfioxacin was the highest (up to 38.5 μg·kg-1), but tetracyclines and macrolides were relatively low. Results showed that the methods were rapid and sensitive, and capable of determining several classes of antibiotics from each of the water, sediment, and fish matrices in a single run.  相似文献   

17.
The combination of low-dose ozone with ultraviolet (UV) irradiation should be an option to give benefit to disinfection and reduce drawbacks of UV and ozone disinfection. However, less is known about the disinfection performance of UV and ozone (UV/ozone) coexposure and sequential UV-followed-by-ozone (UV- ozone) and ozone-followed-by-UV (ozone-UV) expo- sures. In this study, inactivation of E. coli and bacterioph- age MS2 by UV, ozone, UV/ozone coexposure, and sequential UV-ozone and ozone-UV exposures was investigated and compared. Synergistic effects of 0.5-0.9 log kill on E. coli inactivation, including increases in the rate and efficiency, were observed after the UV/ozone coexposure at ozone concentrations as low as 0.05 mg-L-1 in ultrapure water. The coexposure with 0.02-mg.L-1 ozone did not enhance the inactivation but repressed E. coli photoreactivation. Little enhancement on E. coli inactivation was found after the sequential UV-ozone or ozone-UV exposures. The synergistic effect on MS2 inactivation was less significant after the UV/ozone coexposure, and more significant after the sequential ozone-UV and UV-ozone exposures, which was 0.2 log kill for the former and 0.8 log kill for the latter two processes, at ozone dose of 0.1 mg. t-1 and UV dose of 8.55 mJ. cm 2 in ultrapure water. The synergistic effects on disinfection were also observed in tap water. These results show that the combination of UV and low-dose ozone is a promising technology for securing microbiological quality of water.  相似文献   

18.
The growth of human population leads to intensification of agriculture and promotes, through eutrophication, development of cyanobacteria. One of the most widespread and bloom-forming species in freshwater is toxic Microcystis aeruginosa (M. aeruginosa). Combustion of fossil fuels and metallurgical processes are the main sources of heavy metals contamination in surface water including cadmium (Cd) and lead (Pb). The following study was conducted in order to determine the effect of 1- 20 mg. L-1 of Cd and Pb on photochemistry (using flow cytometry) and growth (based on chlorophyll concentra- tion) ofM. aeruginosa as well as to estimate levels of metal bioaccumulation. We have found that 1-10mg.L-1 of Cd and 1-5 rag. L1 of Pb induced continuous enhancement of chlorophyll fluorescence during 24 h of incubation. No significant degradation of chlorophyll was observed in these samples. At higher concentrations of 20 mg. L-1 of Cd and 10-20 mg.L-1 of Pb chlorophyll level significantly decreased and its fluorescence was quenched. M. aeruginosa demonstrated high capability of Cd and Pb bioaccumulation, proportionally to initial metal concentration. In samples with initial concentration of 20 mg. L-1 of Cd and Pb bioaccumulation of 87.3% and 90.1% was observed, respectively. Our study demonstrates that M. aeruginosa can potentially survive in highly metals polluted environments, be a primary source of toxic metals in the food chain and consequently contribute to enhanced toxicity of heavy metals to living organisms including human.  相似文献   

19.
A red water phenomenon occurred in several communities few days after the change of water source in Beijing, China in 2008. In this study, the origin of this problem, the mechanism of iron release and various control measures were investigated. The results indicated that a significant increase in sulphate concentration as a result of the new water source was the cause of the red water phenomenon. The mechanism of iron release was found that the high-concentration sulphate in the new water source disrupted the stable shell of scale on the inner pipe and led to the release of iron compounds. Experiments showed that the iron release rate in the new source water within pipe section was over 11-fold higher than that occurring within the local source water. The recovery of tap water quality lasted several months despite ameliora- tive measures being implemented, including adding phosphate, reducing the overall proportion of the new water source, elevating the pH and alkalinity, and utilizing free chlorine as a disinfectant instead of chloramine. Adding phosphate was more effective and more practical than the other measures. The iron release rate was decreased after the addition of 1.5 mg. L-1 orthophosphate- P, tripolyphosphate-P and hexametaphosphate-P by 68%, 83% and 87%, respectively. Elevating the pH and alkalinity also reduced the iron release rate by 50%. However, the iron release rate did not decreased after replacing chloramine by 0.5-0.8 mg. L-1 of free chlorine as disinfectant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号