首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二氧化碳(CO2)是引起全球变暖的最主要的温室气体(GHGs),直接观测大气CO2浓度对于研究人类活动和自然活动对大气温室气体的贡献至关重要,而在多个高度上观测大气CO2浓度则有助于明晰CO2浓度的时空变化规律,确定其影响机制.本文利用临安区域大气本底站2018-12—2020-11不同高度(距地面21 m、53 m)处的CO2在线观测数据,结合日变化及地面风的影响,对观测数据进行筛分,采用HYSPLIT后向轨迹模型和潜在源贡献因子法,初步探讨气象因素以及大气远距离传输对长江三角洲地区大气CO2浓度的影响.结果表明,临安站高低层大气CO2日变化呈夜间高于白天的特点;低层CO2浓度大于高层,冬季高低层浓度差小于其他三季;日较差呈夏季>春季>秋季>冬季的特点;大气CO2本底季节变化由于受到风向和气团传输的影响呈现出冬季>春季>秋季>夏季的特点;潜在源贡献分析得...  相似文献   

2.
基于五台山站2017年1月~2020年12月的大气CO2连续观测资料,采用平均移动过滤法(MAF)和后向轨迹分析方法,对五台山大气CO2本底浓度及源汇特征进行研究.结果表明:五台山大气CO2浓度受到区域或局地源汇的影响,筛分后的CO2本底小时浓度振幅为44.9×10-6,小于未经筛分的CO2浓度振幅94.7×10-6.2017~2020年CO2本底浓度呈逐年上升趋势,但增幅放缓;抬升浓度占比有所下降,吸收浓度占比波动较小,表明人类活动对CO2浓度的影响逐年减弱,而五台山周边地区陆地生态系统碳汇作用相对稳定.CO2本底浓度夏季最低,秋冬季次之,春季最高;日变化夏季最明显,峰谷值分别出现在05:00和16:00,其他季节日振幅仅在0.7×10-6~1.8×10-6之间.与本底浓度相比,抬升浓度的差异值自10月至翌年3月明显增大,而吸收浓度的差异值在6~9月最显著,分别反映出人为活动排放源以及陆地生态系统吸收汇对CO2本底浓度的影响.源汇浓度日变化均为单峰结构,抬升浓度白天高、夜间低,吸收浓度刚好相反.春、秋和冬季造成CO2浓度明显抬升的地面风向主要为西南风,且随风速的增加CO2浓度能够保持较高水平,而夏季主要为东北偏东风;春、夏季,2~4m/s的风速有利于进一步降低CO2吸收浓度.后向轨迹分析表明,气团远距离输送对源汇浓度的影响除了取决于气团途径区域的CO2排放情况,还与气团的空间垂直输送路径有关.  相似文献   

3.
基于2018年1月—2019年10月杭州大气成分监测数据,对杭州城、郊大气SO2和气溶胶的浓度变化特征及其相关性和影响因素进行分析,并探讨不同季节下长距离输送对大气SO2和PM2.5浓度的贡献及潜在源区分布.结果表明:杭州城、郊大气SO2日变化特征均呈单峰型,气溶胶日变化特征均呈双峰型;杭州城区SO2浓度夏季明显低于其他季节,而郊区SO2浓度四季无明显差异,气溶胶浓度城区和郊区均为夏季最低;SO2与气溶胶相关性偏低,城、郊不同粒径的气溶胶之间相关性差异较大;不同季节杭州城区SO2和PM2.5受气团输送的影响具有明显差异,杭州城市高浓度SO2和气溶胶潜在源区主要位于江苏省苏州市、南京市以及浙江省绍兴市、湖州市和杭州市辖区,因而减少或控制这些潜在源区污染物排放将会对杭州大气环境质量改善有积极作用.  相似文献   

4.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

5.
利用中国气象局秦岭气溶胶与云微物理野外科学试验基地长安站2021年4月~2022年3月涡动相关系统观测资料,结合气象观测资料,研究了秦岭北麓城郊过渡带近地面大气CO2、H2O浓度、蒸发量以及湍流通量演变特征,并讨论了气象要素对碳通量的影响.结果表明:观测时段内CO2小时浓度年均值为(404.4±27.9)×10-6,与瓦里关大气背景观测站和全球背景观测站CO2年均值浓度水平相当,水汽小时浓度年均值为9.44g/m3,年总蒸发量为1321.5mm;CO2、水汽浓度和蒸发量均存在显著的月、季节变化特征;CO2和水汽通量存在明显的日、月和季节变化,全年白天均表现为较强的碳吸收,观测时段内CO2总吸收量约为-3047g/m2;夜间表现为碳排放,观测时段内总排放量约为2631g/m2;气温、土壤温度、相对湿度和风速的变化均会对区域内CO2  相似文献   

6.
基于江西景德镇温室气体站2017年12月~2018年11月筛分获得的CH4及CO大气本底和污染浓度数据,对大气CH4和CO浓度季节变化及其排放源特征进行研究,结果表明:大气CH4和CO本底浓度季节变化特征与浙江临安本底站类似,即夏季低而冬季高,而夏季江西地区水稻田和湿地排放导致CH4污染浓度显著抬升,相比本底浓度抬升幅度可达133.9×10-9,冬季受西北部地区取暖排放的区域输送的影响,1月CO污染平均浓度较本底浓度抬升达227.2×10-9.基于本底数据及污染数据,结合后向轨迹模型分析发现景德镇站大气CO潜在排放源主要分布在湖北东南部(四季)、安徽(秋冬季)、山东中部(秋季)、长江三角洲上海及杭州(夏秋季)、湖南东部和江西地区(冬季)等区域,其中冬季湖南东部和江西地区贡献率达53.7%,CH4排放源主要集中在江西地区(夏季)、长江三角洲杭州、南京及安徽南部覆盖区域(夏季)、湖北东南部(夏秋季)以及安徽(秋季)、山东中部(秋季)等区域,夏季南京、杭州及安徽南部覆盖区域的CH4排放对景德镇站CH4浓度抬升的贡献率达到69.5%.大气CH4及CO呈现较好的相关性,冬季其相关系数可达0.86,受CH4和CO源汇季节变化影响,CH4/CO排放比呈现冬季低值(0.31)、夏季高值(1.06).  相似文献   

7.
依托国家海洋局三沙海洋环境监测中心站,基于激光大气温室气体分析仪(GLA331-GGA),搭建了一套全自动、连续、高精度观测大气CH4的观测系统.通过气团后向轨迹输送特征,结合数值统计方法(局部近似回归法),对西沙永兴岛区域2013年12月~2017年11月期间的观测数据进行了数据筛分和分析.结果显示:西沙海域大气CH4季节变化与北半球大气本底变化状况类似,冬季高、夏季低,年平均增长率约为11.9×10-9,年平均季节振幅为81.1×10-9;其日变化呈现中午低、凌晨高的单周期正弦变化特征;该区域风场数据和气团后向轨迹分析表明:季风是影响该区域CH4浓度变化的最主要因素.  相似文献   

8.
长江三角洲背景地区CO2浓度变化特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5′10-6~44.3′10-6 (V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1′10-6 (V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE~ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.  相似文献   

9.
以长三角城市群为研究对象,利用卫星遥感观测数据协同分析长三角地区大气NO2和CO2浓度的时空变化特征和驱动因子,揭示了长三角地区污染物和CO2高浓度地区空间格局.结果表明长三角城市群地区大气NO2和CO2浓度的时空分布及变化特征呈现了受化石燃料燃烧和机动车排放等人为活动以及区域地形、地表覆盖、气候等自然条件的综合影响结果.大气NO2和CO2高浓度值围绕太湖明显呈口对西南向的U字形分布,一致于围绕太湖分布的杭州、上海、苏州、无锡、常州和南京等大型城市区域,以及安徽铜陵地区的工业排放区.大气NO2浓度值呈现秋冬时期较高,夏季最低的季节分布特征.大气CO2浓度受植被CO2吸收和CO2的积累影响,8~9月最低,4~5月最高.此外,随着人为排放活动的急剧减少,2020年1~3月的大气NO2浓度比2019年同时期降低了50%以上,其中分布了以钢铁厂、燃煤厂为主的大型工业热源的城市NO2浓度下降最多,如镇江、南京、马鞍山.  相似文献   

10.
利用Meteoinfo软件中的Trajstat插件对2019-03—2020-02期间抵达嘉峪关市的气团进行后向轨迹模拟,并结合各类大气污染物数据,对嘉峪关市四季的后向轨迹进行聚类分析,研究抵达嘉峪关市的主要气团输送路径及对应路径的污染物浓度特征。通过潜在源贡献因子法(PSCF)及权重浓度轨迹分析法(CWT)来分析PM10与O3的输送来源及主要潜在源区。结果表明:输送至嘉峪关市的气团中,西北方向气团轨迹数目和污染轨迹数目占比均大于其余方向,嘉峪关市四季的大气污染更易受到西北方向气团的影响。嘉峪关市春季PM10污染相对严重,更易受到新疆东部地区潜在源区的影响,其余三季PM10污染相对较轻,潜在源区主要集中在新疆东部地区,少数位于嘉峪关市东北方向。嘉峪关市春、夏季的O3污染相对严重,强潜在源区主要集中在新疆东部地区及甘肃河西走廊地区,秋、冬季O3污染相对较轻,其中秋季潜在源区主要位于甘肃河西走廊地区,冬季潜在源区主要位于新疆东部地区。  相似文献   

11.
基于HYSPLIT后向轨迹模式和NCEP的GDAS数据(2019年3月~2020年2月),对抵达帕米尔高原东部的48h后向气团轨迹按季节聚类,其PM10和PM2.5年均值分别为(29.4±16.4),(9.3±5.1)μg/m3,大气颗粒物以PM10为主,结合同期PM10浓度数据,分析不同路径对帕米尔高原东部PM10聚集的贡献,并利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),揭示研究期间帕米尔高原东部不同季节PM10的潜在源分布及其贡献水平.结果表明:帕米尔高原东部PM10输送路径的季节特征明显,春季来自中亚的西风气流对应PM10高值,夏季来自中国新疆西部的气流也对应较高PM10值,秋季各轨迹对应PM10值相当,冬季来自南亚方向气流对应PM10高值.PM10春季贡献源区主要位于中国新疆西部、阿富汗东北部、巴基斯坦东北部、塔吉克斯坦中部及东部地区,夏季主要位于中国新疆西部喀什与和田北部地区,秋季主要位于土库曼斯坦东部、乌兹别克斯坦东南部、巴基斯坦北部、阿富汗北部与塔吉克斯坦南部接壤地区,冬季主要位于巴基斯坦东北部、印度北部以及阿富汗北部.  相似文献   

12.
依据合肥市科学岛2013~2016年的CO2体积比浓度廓线,分别从夜间、季节和年度分析了亚热带季风气候的CO2分布特点和合肥科学岛的CO2源汇特征.(1)大气CO2体积比浓度随高度增加而减小,390m的CO2浓度约为15m浓度的95%,夜间随时间推移浓度增加幅度约5%,天亮时CO2浓度有减小的趋势;(2)测量点高度大于100m时,季节特征较明显,CO2体积比浓度夏季最低,冬季最高,浓度相差约10×10-6;(3)测量点高度大于100m时,2013~2016年CO2体积比浓度的年分布随高度变化的梯度相关系数大于0.9,体积比浓度年增长约2.1648×10-6.通过三个时间尺度的CO2体积比浓度廓线分析得出,CO2浓度特征是动植物活动和大气运动等共同作用的结果;CO2长期循环过程中,存在近地面CO2向高空的传输效应.  相似文献   

13.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

14.
大气CO2是重要的温室气体,其浓度变化与气候变化、植物生长、人类活动等密切相关.为了解高原地区近自然状态下大气CO2浓度变化及其影响因子,选取气象要素变化较明显、人为干扰较少的金沙江河谷为研究对象,在谷底江岸边的稀树草坪上设置观测点,对大气CO2浓度和主要气象要素进行连续对照观测,经数据计算并采用Pearson相关系数对其相关性进行分析.结果表明:①研究区大气c(CO2)日变化和年变化均具有波动性,日最高值(316.2 μmol/L)和最低值(291.0 μmol/L)分别出现在09:00和13:00左右,年最高值(338.9 μmol/L)和最低值(228.5 μmol/L)分别出现在10月和7月;季节性变化呈春、夏两季低于秋、冬两季的特征.②研究区大气c(CO2)与温度呈显著负相关(r=-0.97,P < 0.01),即白天温度高而大气c(CO2)低,夜间温度低而大气c(CO2)高.研究区大气c(CO2)与相对湿度呈显著正相关(r=0.97,P < 0.01),00:00-07:00大气c(CO2)和相对湿度均缓慢上升,09:00-12:00大气c(CO2)和相对湿度均快速下降.研究区大气c(CO2)与风速呈显著负相关(r=-0.93,P < 0.01),其与风对大气c(CO2)有扩散作用相关;不同季节大气c(CO2)最高值或最低值所对应的风向有所不同.研究显示,金沙江河谷大气c(CO2)的时间变化特征明显,其与温度、相对湿度、风速、风向等气象要素的变化密切相关.   相似文献   

15.
基于南京市空气质量数据和NCEP全球再分析资料,利用后向轨迹模式计算了2019年3月至2020年2月以南京城区为受体点的逐小时气团24 h后向轨迹,并将后向轨迹数据和PM2.5浓度数据结合,进行轨迹聚类和潜在源区分析.结果表明,研究期间南京市ρ(PM2.5)平均值为(36±20)μg·m-3,超过国家二级标准限值的污染天数为17 d,ρ(PM2.5)的季节变化特征明显:冬季(49μg·m-3)>春季(42μg·m-3)>秋季(31μg·m-3)>夏季(24μg·m-3),全年PM2.5浓度和地面气压显著正相关,而跟气温、相对湿度、降水量和风速均为显著负相关关系;春季气团输送路径为7条,其余季节均为6条,其中,春季的西北路和东南偏南路,秋季东南路和冬季西南路是各季主要的污染输送路径,均具有传输距离短,气团移动慢的特点,说明静稳天气下本地累积是PM2.5出...  相似文献   

16.
通过采集北京市典型区域2016年12月~2017年11月期间大气降水样品,实时监测降水前、期间和后大气非难熔亚微米颗粒物NR-PM1及其组分浓度,研究了降水的理化特性、典型降水过程离子组分变化特征、以及对大气非难熔亚微米颗粒物NR-PM1及其组分的影响,同时采用后向轨迹聚类分析法研究了气团长距离传输对降水组分的影响.结果表明,2017年北京市典型区域降水主要集中在夏季,约占总降水量的82.2%,降水主要呈中性或碱性,酸雨发生率很低.降水pH值表现为冬季 > 春季 > 夏季~秋季的季节变化特征.降水中总离子浓度、总阴、阳离子浓度均表现为春季 > 夏季 > 冬季 > 秋季,且呈污染日显著高于清洁日的变化特征.降水中主要水溶性离子年均浓度表现为NH4+ > Ca2+ > NO3- > SO42- > Na+ > Cl- > Mg2+ > F- > K+,其中NH4+、Ca2+、NO3-和SO42-是降水中最主要的离子组分,占总离子浓度的80%以上,各离子浓度均呈污染日高于清洁日的变化特征.降水期间不同时段,降水中各离子浓度大多表现为:降水初期最高,降水中期显著低于降水初期,降水后期均略有增加.降雨量和降雨速率较小的降水对污染日大气NR-PM1及其组分的清除作用较强,而降雨量和降雨速率较大的降水对清洁日NR-PM1及其组分的清除作用较小.值得关注的是在降水不同时段,始终存在2个重要的过程,即污染物的累积和二次污染物的形成过程,以及降水的云下冲刷和云内雨除过程.研究期间,降水主要受到东南和西南方向气团影响,分别约占总降水的60%和23%,且主要发生在夏季,这些气团对降水中离子组分都有不同程度的影响.  相似文献   

17.
帕米尔高原东部PM10输送路径及潜在源分析   总被引:2,自引:0,他引:2  
基于HYSPLIT后向轨迹模式和NCEP的GDAS数据(2019年3月~2020年2月),对抵达帕米尔高原东部的48h后向气团轨迹按季节聚类,其PM10和PM2.5年均值分别为(29.4±16.4),(9.3±5.1)μg/m3,大气颗粒物以PM10为主,结合同期PM10浓度数据,分析不同路径对帕米尔高原东部PM10聚集的贡献,并利用潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),揭示研究期间帕米尔高原东部不同季节PM10的潜在源分布及其贡献水平.结果表明:帕米尔高原东部PM10输送路径的季节特征明显,春季来自中亚的西风气流对应PM10高值,夏季来自中国新疆西部的气流也对应较高PM10值,秋季各轨迹对应PM10值相当,冬季来自南亚方向气流对应PM10高值.PM10春季贡献源区主要位于中国新疆西部、阿富汗东北部、巴基斯坦东北部、塔吉克斯坦中部及东部地区,夏季主要位于中国新疆西部喀什与和田北部地区,秋季主要位于土库曼斯坦东部、乌兹别克斯坦东南部、巴基斯坦北部、阿富汗北部与塔吉克斯坦南部接壤地区,冬季主要位于巴基斯坦东北部、印度北部以及阿富汗北部.  相似文献   

18.
基于2015~2018年苏州张家港站CO2在线观测数据,采用时序检查、选取稳定性数据、异常值剔除等质量控制方法获得可靠数据,并通过平均移动过滤(MAF)本底筛分法获得本底数据,讨论苏南地区CO2变化特征.结果发现:CO2本底浓度日变化为单峰结构,谷值和峰值分别出现在下午15:00和凌晨5:00前后;季节变化为双峰结构,峰值分别出现在12月和4月;日、季节变化的分布特征均与陆地生态系统、气象条件和人类活动有关.此外,2015~2018年CO2浓度呈逐年上升趋势,抬升浓度占比逐年增加,吸收浓度占比波动较小,表明人类活动对CO2浓度的影响正在逐年增加;而陆地生态系统对CO2吸收汇的作用则相对稳定.源汇分析显示,CO2抬升浓度随季节小幅波动;吸收浓度则夏半年较低,冬半年较高;抬升浓度日变化为单峰结构,谷值和峰值分别出现在15:00和8:00前后,早晨正值上班高峰,机动车排放可能为早晨峰值的主要因素;吸收浓度日间低、夜间高,这主要与植物光合作用及对流输送有关.分析CO2浓度与风的关系发现,所有季节静风情况下,CO2浓度偏高均最为明显,大部分方向CO2浓度高低与风速大小有明显的负相关,其中S~WNW方向偏高最为明显,这可能是因为SW~NW方向主要为内陆城市群,且测站周边建筑区主要位于W~N方向,弱风有利于本地排放累积的结果.此外,WNW方向风速较大时浓度仍偏高明显,可能与测站W~N方向为建筑区及内陆城市群有关;而测站偏东方向主要为农田和林区,受人类活动影响较小,且海上气流较为洁净,故偏东风较弱时浓度也不高;说明了CO2浓度除了与风速大小有关外,与周边下垫面类型及较远距离环境特征(城市群或海洋)也有一定的关系.  相似文献   

19.
利用Morlet小波方法分析北京市2008~2017年PM2.5资料,结果表明,北京市PM2.5浓度存在显著的日变化、周变化、以及季节和年变化周期性特征,并且秋冬季的周期性特征显著高于春夏季.结合气象资料,包括水平风速、大气边界层高度、以及大气稳定度指数等,分析PM2.5不同周期性变化对应的主要影响机制表明:大气边界层过程是PM2.5日变化的主要影响机制,导致PM2.5浓度白天低、夜间高.秋冬季PM2.5日变化幅度高于春夏季;天气过程是PM2.5周变化的主要机制,PM2.5浓度与天气变化过程带来的风速变化和边界层高度呈强反相关关系;PM2.5的季节变化与大气扩散能力的季节变化密切相关,秋冬季减弱的大气扩散能力加速了PM2.5在近地面累积,春夏季则相反.  相似文献   

20.
准确评估大气CO2浓度和人为CO2排放时空变化对于减缓温室气体排放导致的气候变化至关重要,因此,本文基于GOSAT和OCO-2卫星数据融合生成的全球长时间序列、时空连续的Mapping-XCO2产品,研究2010~2020年中国大气CO2柱浓度(XCO2)时空变化特征以及卫星监测人为CO2排放能力.结果表明:Mapping-XCO2与中国大气本底站观测存在较高的一致性,具有良好的适用性;2010~2020年中国XCO2呈现东高西低的空间分布,年均XCO2为400.4×10-6,年增长速率为2.47×10-6;非生长季XCO2异常可刻画人为CO2排放时空变化,各省级行政区非生长季XCO2异常与人为排放清单EDGAR和ODIAC的相关系数分别为0.71、0.67;2010~2020年京津...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号