首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many accidents involve two-phase releases of hazardous chemicals into the atmosphere. This paper describes the results of the fourth phase of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of Phase IV of the JIP was to generate experimental rainout data for non-flashing experiments, and to develop recommendations for the best methodology to predict rainout [total rainout mass and its spatial distribution (‘distributed’ rainout)].Phase IV of the JIP first included rainout experiments by the UK Health and Safety Laboratory (HSL) for sub-cooled releases of water and xylene with a range of orifice sizes and stagnation pressures. See the companion paper II for further details. Secondly model validation was carried out by DNV Software for these experiments using different correlations for the initial droplet size (Sauter Mean Diameter, SMD), i.e. the CCPS SMD correlation and the Phase III JIP SMD correlation. The validation includes flow rates, droplet size, distributed rainout and cloud temperature drop. Subsequently validation was considered for a wider range of experiments from the literature (sub-cooled and superheated releases) for both SMD and total rainout. Adopted rainout methods comprised both methods including explicit modelling of the droplets (using an extended version of Phast dispersion model UDM), as well as more simple methods based on rainout correlations without droplet modelling. Recommendations are made for the most accurate droplet size and rainout modelling. A modified CCPS UDM droplet size correlation has been shown to agree best against experimental rainout data.  相似文献   

2.
This paper describes the results of the first stage of Phase III of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. This stage included scaled experiments for water, gasoline, and cyclohexane for a range of superheats and nozzles with different aspect ratios. Additional experiments for butane and propane were conducted as a validation exercise and are discussed in the companion paper. Moreover this paper provides recommendations for atomisation correlations in the regimes of mechanical break-up, transition to flashing, and fully flashing. The objectives of this scaled experimental programme are to : (i) provide confidence in the previously proposed modelling methodology (Phase II) across a broad range of initial conditions (ii) update the models’ correlations to generalise further its applicability (iii) recommend further model improvements. Development of new correlations for Sauter Mean Droplet diameter (SMD) and droplet size distribution is based on a best fit of the current scaled experimental data. The new data endorses the previous tri-functional Phase II approach including regimes for mechanical break-up, transition to flashing, and fully flashing, which is hence updated in the new Phase III SMD model. Considerable effort is devoted to capturing the full droplet size range under low-superheat conditions. Also, new enhancements in PDA technology were adopted to enable better quality data under high-superheat conditions. The priority recommendation for further model improvement is better characterisation of the poor quality releases under low-superheat conditions, where this work indicates that extremely broad droplet size distributions are likely. A companion paper (Part I) presents a more general overview of the dispersion problem, implementation of the correlations and subsequent performance against both the current scaled experiments and additional large-scale butane experiments.  相似文献   

3.
This paper describes the results of the first experimental stage of Phase IV of a Joint Industry Project (JIP) on liquid jets and two-phase droplet dispersion. The objective of this stage of the JIP was to generate experimental rainout data for non-flashing water and xylene experiments. See the overview companion paper I for a wider overview of the problem, model implementation and associated model validation.A range of orifice sizes (2.5 and 5 mm) and stagnation pressures (4–16 barg) were applied. Measurements included flow rate, initial droplet size, plume concentrations/temperatures for a range of downstream locations, and distributed rainout.Instead of the Phase Doppler Anemometry method used for droplet size measurements earlier in the JIP, a photographic technique was applied in an attempt to include measurement of the larger (non-spherical) droplets. This enabled a more accurate evaluation of the initial droplet size distribution and a much clearer understanding of the droplet morphology. The results showed that the droplet behaviour in the jet is more complex than had been anticipated with the mass distribution dominated by a very small number of large non-spherical droplets. Consequently a large number of spray images were required to evaluate an accurate size distribution.Distributed rainout was measured by weighing the amount of rainout in trays positioned along the jet direction. The rainout results showed a good degree of repeatability and internal consistency. They indicated that an increasing proportion of the released material did not rainout for increasing pressure. Rainout distance also increased with increasing pressure. Evaporation of the liquid was confirmed by temperature measurements, which showed the effect of evaporative cooling.Xylene concentration measurements (up to 1%) were carried out using a direct reading photoionization detector calibrated for xylene (measuring vapour only). For a limited dataset, the accuracy of these measurements was estimated by means of comparison against an alternative more time-consuming concentration method (xylene absorption onto a charcoal filter; measuring both vapour and liquid). The concentration measurements displayed several consistent qualitative features. For example, at a given downstream distance, the peak concentration increases with increasing pressure and nozzle diameter and the vertical height at which the peak is achieved increases. The cross-stream profiles displayed a consistent tendency to increased concentration at the edge of the jet, and the reason for this has not been established.Finally recommendations are provided for potential future work.  相似文献   

4.
The consequence modelling package Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released substance to occur only in the vapour and liquid phases. The latest versions of Phast include extended models which also allow for the occurrence of fluid to solid transition for carbon dioxide (CO2) releases.As part of two projects funded by BP and Shell (made publicly available via CO2PIPETRANS JIP), experimental work on CO2 releases was carried out at the Spadeadam site (UK) by GL Noble Denton. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases (vapour storage). The CO2 was stored in a vessel with attached pipework. At the end of the pipework a nozzle was attached, where the nozzle diameter was varied.This paper discusses the validation of Phast against the above experiments. The flow rate was predicted accurately by the Phast discharge models (within 10%; considered within the accuracy at which the BP experimental data were measured), and the concentrations were found to be predicted accurately (well within a factor of two) by the Phast dispersion model (UDM). This validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

5.
This paper discusses the validation of discharge and subsequent atmospheric dispersion for both unpressurised and pressurised carbon dioxide releases using the consequence modelling package Phast.The paper first summarises the validation of the Phast dispersion model (UDM) for unpressurised releases. This includes heavy gas dispersion from either a ground-level line source (McQuaid wind-tunnel experiments) or an area source (Kit-Fox field experiments). For the McQuaid experiments minor modifications of the UDM were made to support line sources. For the Kit Fox experiments steady-state and 20-s finite-duration releases were simulated for both neutral and stable conditions. Most accurate predictions of the concentrations for finite duration releases were obtained using the UDM Finite Duration Correction method.Using experiments funded by BP and Shell and made available via DNV's CO2PIPETRANS JIP, the paper secondly summarises the validation of the Phast discharge and dispersion models for pressurised CO2 releases. This modelling accounted for the possible presence of the solid CO2 phase following expansion to atmospheric pressure. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases. Both the flow rate and the concentrations were found to be predicted accurately.The above validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models.  相似文献   

6.
This paper discusses the modelling of the discharge and subsequent atmospheric dispersion for carbon dioxide releases using extensions of models in the consequence modelling package Phast. Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released chemical to occur only in the vapour and liquid phases. As part of the current work these models have been extended to also allow for the occurrence of liquid to solid transition or vapour to solid transition. This applies both for the post-expansion state in the discharge model, as well as for the thermodynamic calculations by the dispersion model. Solid property calculations have been added where necessary. The above extensions are generally valid for fluid releases including CO2. Using the extended dispersion formulation, a sensitivity study has been carried out for mixing of solid CO2 with air, and it is demonstrated that solid effects may significantly affect the predicted concentrations.  相似文献   

7.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

8.
To be able to perform proper consequence modelling as a part of a risk assessment, it is essential to be able to model the physical processes well. Simplified tools for dispersion and explosion predictions are generally not very useful. CFD tools have the potential to model the relevant physics and predict well, but without proper user guidelines based on extensive validation work, very mixed prediction capability can be expected. In this article, recent dispersion validation effort for the CFD tool FLACS–HYDROGEN is presented. A range of different experiments is simulated, including low-momentum releases in a garage, subsonic jets in a garage with stratification effects and subsequent slow diffusion, low momentum and subsonic horizontal jets influenced by buoyancy, and free jets from high-pressure vessels. LH2 releases are also considered. Some of the simulations are performed as blind predictions.  相似文献   

9.
A dispersion model validation study is presented for atmospheric releases of dense-phase carbon dioxide (CO2). Predictions from an integral model and two different Computational Fluid Dynamics (CFD) models are compared to data from field-scale experiments conducted by INERIS, as part of the EU-funded CO2PipeHaz project.The experiments studied consist of a 2 m3 vessel fitted with a short pipe, from which CO2 was discharged into the atmosphere through either a 6 mm or 25 mm diameter orifice. Comparisons are made to measured temperatures and concentrations in the multi-phase CO2 jets.The integral dispersion model tested is DNV Phast and the two CFD models are ANSYS-CFX and a research and development version of FLACS, both of which adopt a Lagrangian particle-tracking approach to simulate the sublimating solid CO2 particles in the jet. Source conditions for the CFD models are taken from a sophisticated near-field CFD model developed by the University of Leeds that simulates the multi-phase, compressible flow in the expansion region of the CO2 jet, close to the orifice.Overall, the predicted concentrations from the various models are found to be in reasonable agreement with the measurements, but generally in poorer agreement than has been reported previously for similar dispersion models in other dense-phase CO2 release experiments. The ANSYS-CFX model is shown to be sensitive to the way in which the source conditions are prescribed, while FLACS shows some sensitivity to the solid CO2 particle size. Difficulties in interpreting the results from one of the tests, which featured some time-varying phenomena, are also discussed.The study provides useful insight into the coupling of near- and far-field dispersion models, and the strengths and weaknesses of different modelling approaches. These findings contribute to the assessment of potential hazards presented by Carbon Capture and Storage (CCS) infrastructure.  相似文献   

10.
Many commonly used atmospheric dispersion models are limited to continuous or instantaneous releases only, and cannot accurately simulate time-varying releases. The current paper discusses a new enhanced dispersion formulation accounting for time-varying effects resulting from a pressure drop in a vessel or pipe, and presuming no rainout. This new formulation is implemented in the Unified Dispersion Model (UDM), and is planned to be included in a future version of Phast.First existing methods are summarised for modelling finite-duration and time-varying releases, and limitations of these methods are identified.Secondly the new mathematical model is summarised. The new formulation presumes a number of ‘observers’ to be released at successive times from the point of discharge. The UDM carries out pseudo steady-state calculations for each observer, where the release data correspond to the time at which the observer is released. Subsequently the model applies a correction to the observer concentrations to ensure mass conservation when observers move with different velocities. Finally effects of along-wind diffusion (due to ambient turbulence) are included by means of Gaussian integration over the downwind distance. This results in reduced concentrations while the cloud travels in the downwind direction.The benefits of the new UDM methodology are illustrated for the case of a H2S toxic release from a long pipeline representative of some extremely sour fields in the Middle East that are now being developed. Using corrected observer concentrations and along-wind diffusion significantly reduces toxic effect distances when compared to the current Phast 7.1 approach.  相似文献   

11.
A methodology is presented for global sensitivity analysis of consequence models used in process safety applications. It involves running a consequence model around a hundred times and using the results to construct a statistical emulator, which is essentially a sophisticated curve fit to the data. The emulator is then used to undertake the sensitivity analysis and identify which input parameters (e.g. operating temperature and pressure, wind speed) have a significant effect on the chosen output (e.g. vapour cloud size). Performing the sensitivity analysis using the emulator rather than the consequence model itself leads to significant savings in computing time.To demonstrate the methodology, a global sensitivity analysis is performed on the Phast consequence model for discharge and dispersion. The scenarios studied consist of above-ground, horizontal, steady-state discharges of dense-phase carbon dioxide (CO2), with orifices ranging in diameter from ½ to 2 inch and the liquid CO2 stagnation conditions maintained at between 100 and 150 bar. These scenarios are relevant in scale to leaks from large diameter above-ground pipes or vessels.Seven model input parameters are varied: the vessel temperature and pressure, orifice size, wind speed, humidity, ground surface roughness and height of the release. The input parameters that have a dominant effect on the dispersion distance of the CO2 cloud are identified, both in terms of their direct effect on the dispersion distance and their indirect effect, through interactions with other varying input parameters.The analysis, including the Phast simulations, runs on a standard office laptop computer in less than 30 min. Tests are performed to confirm that a hundred Phast runs are sufficient to produce an emulator with an acceptable degree of accuracy. Increasing the number of Phast runs is shown to have no effect on the conclusions of the sensitivity analysis.The study demonstrates that Bayesian analysis of model sensitivity can be conducted rapidly and easily on consequence models such as Phast. There is the potential for this to become a routine part of consequence modelling.  相似文献   

12.
The explosion hazard of flammable liquids leaking to form spray in storage and transportation at ambient temperature has not been systematically investigated. This work presents new results from experimental investigations of the atomization and explosion characteristics of methanol, and methanol-benzene blends forming near the azeotrope under different initial conditions (initial temperature (298.15–318.15 K), methanol concentration (198–514.8 g/m3) and benzene content (41–81%)) in a 20-L spherical vessel. The empirical formulas for Sauter Mean Diameter (SMD) of the droplets and the maximum explosion pressure with respect to the initial temperature and methanol concentration were obtained from the quantitative analysis. Compared to the explosion hazard of pure methanol and methanol-benzene blends spray, the results showed that the maximum rate of pressure rise and maximum explosion temperature of methanol-benzene blends were relatively low. Furthermore, the effect of carbon soot formation on the explosion hazard during explosion development was analyzed.  相似文献   

13.
As an effort to improve the prediction of hydrogen dispersion in the atmosphere, effects of buoyancy acting on the hydrogen jets formed by releasing from high pressure vessels are investigated analytically and experimentally. For the analytical study, an integral analysis for buoyant jets and flames is carried out to yield the closed formula describing the jet and flame shapes, including their trajectory and horizontal and vertical lengths corresponding to the critical concentrations. Because the density of hydrogen after releasing from high pressure storage conditions is much close to that of helium than that of hydrogen at room temperature, helium is used as the hydrogen surrogate for the buoyant jet experiments, which were performed by visualizing the jet dispersing in the atmosphere up to the jet Reynolds number Re ~ 2400. The trajectories obtained by the integral analysis and experiments agree relatively well until the transition to turbulence occurs. A further estimate for jets and flames is made by using the integral analysis as a preliminary design to the experiments involving a much greater hydrogen release. Once the comparative investigation of the larger scale experiments with the integral analysis, we anticipate that a more universal hydrogen jet and flame data can be obtained, which perhaps leads to a better safety distance of hydrogen stations.  相似文献   

14.
When handling flammable and/or toxic liquids or gases, the gas dispersion following a release of substance is a scenario to be considered in the risk assessment to determine the lower flammability distance (LFD) and toxicity thresholds. In this work a comparison of different gas dispersion tools of varying complexity ranging from a simple Gaussian model over a boundary layer model (BLM) and a Lagrangian model to CFD (in this case ANSYS CFX v14) is presented. The BLM covers the special case of liquid releases with formation of a pool. It does not only solve the gas dispersion but also calculates the evaporating mass flow out of the pool. The simulation values are compared to each other and to experimental data resulting mainly from our own open air experiments covering the near field and carried out on the Test Site Technical Safety of BAM (BAM-TTS) for different release types (pool evaporation, gas release) and topologies. Other validation data were taken from literature and cover large scale experiments in the range of several 100 m.  相似文献   

15.
This paper presents a risk assessment methodology for high pressure CO2 pipelines developed at the Health and Safety Laboratory (HSL) as part of the EU FP7 CO2Pipehaz project. Until recently, risk assessment of dense phase and supercritical CO2 pipelines has been problematic because of the lack of suitable source term and integral consequence models that handle the complex behaviour of CO2 appropriately. The risk assessment presented uses Phast, a commercially available source term and dispersion model that has been recently updated to handle the effects of solid CO2. A test case pipeline was input to Phast and dispersion footprints to different levels of harm (dangerous toxic load and probit values) were obtained for a set of pipeline specific scenarios. HSL's risk assessment tool QuickRisk was then used to calculate the individual and societal risk surrounding the pipeline. Knowledge gaps that were encountered such as: harm criteria, failure rates and release scenarios were identified and are discussed.  相似文献   

16.
张铖铖  方俊  林树宝  江澄  商蕊 《火灾科学》2014,23(4):238-244
烟颗粒粒径分布和浓度变化是探测香烟阴燃火灾初期的重要参数,研究香烟阴燃过程烟颗粒粒谱分布对火灾探测具有指导意义。实验通过在室内有风条件下展开,研究风速、位置、时间、烟源等因素对烟颗粒的粒径分布和形成规律的影响。结果表明:1随着时间的推移,GMD(Geometric Mean Diameter,几何平均直径)变大,烟颗粒数量浓度增加,但粒谱分布逐渐趋于稳定。2风速对颗粒粒谱形成的影响较为复杂,随着风速的增加,气流扰动加剧,烟颗粒浓度增加,GMD有减小的变化趋势。3在不同的位置,有风条件下烟颗粒随着气流迁移,最终在壁面处进行积累,离烟源越远位置,沿着风速方向浓度和GMD均变大。4烟颗粒的初始浓度也影响烟颗粒粒谱分布和运动特征,烟源数量越多,初始浓度越大,形成的烟颗粒浓度和GMD越大。  相似文献   

17.
A new safety characteristic the “dustiness” according to VDI 2263 – part 9 (Verein Deutscher Ingenieure, 2008) is investigated. Dustiness means the tendency of a dust to form clouds. The paper deals with the physical reasons for the different behavior of dusts, even if they have similar properties such as particle size and density and the influence of the dustiness on dust explosions. In order to study the effects of the dustiness on dust cloud formation for different dispersion methods experiments in a vertical dust dispersion glass tube apparatus were carried out. Furthermore vented dust explosion experiments were done for two different dispersion methods and two static activation pressures.Experiments show that particle size and density are not the only factors which influence dispersibility. Particle shape, specific surface area, flow and dispersion method have an influence which can outweigh size and density. Preliminary explosion experiments showed that the dustiness has an influence on the reduced explosion pressure and flame speed in a vented 75 L test apparatus. In order to verify the results for applications in the process industries further tests with industrial scale experiments are planned.  相似文献   

18.
A programme of large-scale experiments for atmospheric dispersion was carried out by INERIS over a period extending from December 1996 to April 1997. The objectives of the test campaign were to measure anhydrous ammonia concentrations in a range of few meters to 2 km from the release, in order to generate data to be used to improve 2-phase discharge and dispersion modelling.

The discharges were released from a 6-tonne storage tank of pressurised liquid ammonia and through a discharge device with an outlet diameter of 2 in. Fifteen trials were carried out with various release configurations corresponding to industrial situations (impinging jets on the ground and on a wall at various distances, release through a flange without seal…). The quantity of ammonia discharged from the liquid phase varied according to the tests, from 1.4 to 3.5 tons for durations between 7 and 14 min and, therefore, at flow rates between 2 and 4.5 kg/s. Approximately 200 sensors were settled downwind to measure ammonia concentrations and temperature in the plume. These tests showed that for discharges with identical flow rates the distances corresponding to the same concentration vary a lot according to the configurations. These distances tend to be reduced by the presence of obstacles or retention dikes that collected liquid ammonia. In the paper, the main experimental results are presented. In order to enable the comparisons with numerical predictions, more detailed information are given in [Bouet R. (1999). Ammoniac—Essais de dispersion atmosphérique à grande échelle. INERIS rapport, ref INERIS-DRA-RBo-1999-20410 (available at http://www.ineris.fr/recherches/recherches.htm).  相似文献   


19.
20.
为掌握超音速虹吸式空气雾化喷嘴雾化机理及特性,采用流体力学线性不稳定理论分析雾化机理,通过喷雾实验研究不同因素对雾化性能的影响及对比不同类型喷嘴的雾化效果。研究结果表明:随着距喷嘴出口距离增加,超音速虹吸式空气雾化喷嘴在雾滴破碎后碰撞聚合作用由强到弱,300 mm内雾滴粒径增长速率明显,300 mm外雾滴粒径增长速率较缓。随着供气压力增加,超音速虹吸式空气雾化喷嘴雾滴粒径逐渐减小,在实测距离内SMD(平均粒径)最小为17.5 μm。不同供气压力下,超音速虹吸式空气雾化喷嘴随距离增加,雾滴粒径增长趋势基本一致。有效射程内供气压力为0.1~0.5 MPa时,SMD仅为17.5~31.16 μm。对比实验中,超音速虹吸式空气雾化喷嘴SMD比内混式空气雾化喷嘴和X旋流型压力喷嘴小53.5%~74.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号