首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the degradation of bisphenol A (BPA) in aqueous solution was developed. The oxidative degradation characteristics of BPA in a heterogeneous Fenton reaction catalyzed by Fe3O4/graphite oxide (GO) were studied. Transmission electron microscopic images showed that the Fe3O4 nanoparticles were evenly distributed and were ~6 nm in diameter. Experimental results suggested that BPA conversion was affected by several factors, such as the loading amount of Fe3O4/GO, pH, and initial H2O2 concentration. In the system with 1.0 g L?1 of Fe3O4/GO and 20 mmol L?1 of H2O2, almost 90 % of BPA (20 mg L?1) was degraded within 6 h at pH 6.0. Based on the degradation products identified by GC–MS, the degradation pathways of BPA were proposed. In addition, the reused catalyst Fe3O4/GO still retained its catalytic activity after three cycles, indicating that Fe3O4/GO had good stability and reusability. These results demonstrated that the heterogeneous Fenton reaction catalyzed by Fe3O4/GO is a promising advanced oxidation technology for the treatment of wastewater containing BPA.  相似文献   

2.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

3.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

4.
The antimicrobial activity of Cu2O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24 h of contact the Cu2O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1 h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu2O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1 h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.  相似文献   

5.
The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM10) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2, and7.2–10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95–1.5-μm size range within the fine mode and at 7.3–10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49–0.95 and 7.3–10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1–12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM10 during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM10 was found in particles ≤0.95 μm in diameter which could induce adverse health effects to the population living in these areas.  相似文献   

6.
The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L?1). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L?1 ZnO NPs significantly increased SOD and CAT activities (P?<?0.05) and significantly depressed photosynthetic pigments (P?<?0.05). However, plant growth was not significantly affected (P?>?0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L?1 can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.  相似文献   

7.
The effect of varying inorganic (chloride, nitrate, sulfate, and phosphate) and organic (represented by humic acid) solutes on the removal of aqueous micropollutant bisphenol A (BPA; 8.8 μM; 2 mg/L) with the oxidizing agents hydrogen peroxide (HP; 0.25 mM) and persulfate (PS; 0.25 mM) activated using zero-valent aluminum (ZVA) nanoparticles (1 g/L) was investigated at a pH of 3. In the absence of the solutes, the PS/ZVA treatment system was superior to the HP/ZVA system in terms of BPA removal rates and kinetics. Further, the HP/ZVA process was not affected by nitrate (50 mg/L) addition, whereas chloride (250 mg/L) exhibited no effect on the PS/ZVA process. The negative effect of inorganic anions on BPA removal generally speaking increased with increasing charge in the following order: NO3? (no inhibition)?<?Cl? (250 mg/L)?=?SO42??<?PO43? for HP/ZVA and Cl? (250 mg/L; no inhibition)?<?NO3??<?SO42??<?PO43? for PS/ZVA. Upon addition of 20 mg/L humic acid representing natural organic matter, BPA removals decreased from 72 and 100% in the absence of solutes to 24 and 57% for HP/ZVA and PS/ZVA treatments, respectively. The solute mixture containing all inorganic and organic solutes together partly suppressed the inhibitory effects of phosphate and humic acid on BPA removals decreasing to 46 and 43% after HP/ZVA and PS/ZVA treatments, respectively. Dissolved organic carbon removals were obtained in the range of 30 and 47% (the HP/ZVA process), as well as 47 and 57% (the PS/ZVA process) for the experiments in the presence of 20 mg/L humic acid and solute mixture, respectively. The relative Vibrio fischeri photoluminescence inhibition decreased particularly for the PS/ZVA treatment system, which exhibited a higher treatment performance than the HP/ZVA treatment system.  相似文献   

8.
9.
Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu2+ and Zn2+ from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu2+ and Zn2+ from a aqueous solution containing a 100 mg/l of Cu2+ and Zn2+, where 92.9 % Cu2+ and 58.3 % Zn2+ were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu2+ and Zn2+. A kinetics study indicated that removing Cu2+ and Zn2+ with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu2+and Zn2+ on bentonite and the degradation of Cu2+and Zn2+ by nZVI on the bentonite. However, Cu2+ removal by B-nZVI was reduced rather than adsorption, while Zn2+ removal was main adsorption. Finally, Cu2+, Zn2+, Ni2+, Pb2+ and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.  相似文献   

10.
γ-Ferric oxide nanoparticles are synthesized through modern and facile ayurvedic route followed by normal and special purification steps, which are both cost-effective and eco-friendly. These synthesized γ-ferric oxide nanoparticles were applied on Solanum lycopersicum to search the effect on chlorophyll content. This process involves multiple filtration and calcination steps. The synthesized samples were analyzed by X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and particle size analysis (PSA) to identify the purification step’s influence on the structural, optical, morphological, magnetic, and particle size properties of ferric oxide nanoparticles (γ-phase). X-ray diffraction has revealed that ferric oxide nanoparticles have rhombohedral structure of α-phase (hematite) in initial purification process later transformed into cubic structure γ-phase (maghemite). UV-vis spectroscopy analysis has clearly shown that by repetitive purification steps, λmax has increased from 230 to 340 nm. TEM result has an intercorrelation with XRD results. γ-Ferric oxide nanoparticles were tested on Solanum lycopersicum (tomato seeds). The changes in the contents of chlorophyll a, chlorophyll b, and total carotene were studied using spectral measurements at two different dosages—0.5 and 2 M. As a result, at 0.5-M concentration, magnetic nanoparticles exhibit fruitful results by increasing the crop yield and being more resistant to chlorosis.  相似文献   

11.
The influence of molybdenum oxide nanoparticles (MoO3) on the growth and survival of Eisenia fetida was established. The activity of antioxidant enzymes and changes in concentration of molybdenum in the body of E. fetida were determined. The degree of bacterial bioluminescence inhibition in extracts of substrates and worm was studied using luminescent strain Escherichia coli K12 TG1. The enzymatic activity of substrates before and after exposure with nanoparticles and worms was assessed. Nanoparticles have concentrations of 10, 40, and 500 mg/kg of dry matter, and substrata are made of artificial soil (substrate A) and microcrystalline cellulose (substrate B). Spherical nanoparticles MoO3, yellow in color, with size 92?±?0.3 nm, Z-potential 42?±?0.52 mV, molybdenum content 99.8 mass/%, and specific area 12 m2/g were used in the study. A significant decrease by 23.3 % in weight was registered (for MoO3 NPs at 500 mg/kg) on substrate A (p?≤?0.05). On substrate B, the maximum decrease in weight by 20.5, 33.3, and 16.9 % (p?≤?0.05) was registered at a dose of 10, 40, and 500 mg/kg, respectively; mortality was from 6.6 to 73 %. After the assessment of bacterial bioluminescence inhibition in substrates A and B (extracts) and before worms were put, the toxicity of substrates was established at doses of 40 and 500 mg/kg, expressed in inhibitory concentration (IC) 30 and IC 50 values. Comparatively, on days 7 and 14, after exposure in the presence of E. fetida, no inhibition of bioluminescence was registered in extracts of substrates A and B, indicating the reduction in toxicity of substrates. The initial content of molybdenum in E. fetida was 0.9?±?0.018 mg/kg of dry matter. The degree of molybdenum accumulation in worm tissue was dependent on the dose and substrate quality. In particular, 2–7 mg/kg of molybdenum accumulated from substrate A, while up to 15 kg/kg of molybdenum accumulated from substrate B (day 7). Molybdenum concentration decreased by 64.8 and 57.4 % at doses 40 and 500 mg/kg, respectively, on day 14. The reaction of antioxidant enzymes was shown in an insignificant increase of glutathione reductase (GSR) and catalase (CAT) at concentrations of 10 and 40 mg/kg in substrate A, followed by the subsequent reduction of their activity at the dose of 500 mg/kg MoO3. The activity of GSR in substrate B against the presence of MoO3 nanoparticles decreased, with significant difference of 33.5 % (p?≤?0.05) at the dose of 500 mg/kg compared with untreated soil. In experiments with substrate A, an increase of catalase activity was registered for the control sample. The presence of MoO3 nanoparticles at the concentration of 10 mg/kg in the environment promoted enzymatic activity on days 7 and 14, respectively. A further increase of nanoparticle concentration resulted in the decrease of catalase activity with a minimum value at the concentration of MoO3 of 500 mg/kg. In the experiment with substrate B at the concentration of MoO3 nanoparticles of 40 mg/kg, enzymatic activity increases on day 7 of exposure. However, the stimulating effect of nanoparticles stops by day 14 of the experiment and further catalase activity is dose dependent with the smallest value in the experiment with MoO3 having the concentration of 500 mg/kg.  相似文献   

12.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

13.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

14.
Bisphenol A (BPA) is one of the synthetic monomer which can be found in the environment. Limited animal and human studies have demonstrated that BPA alters endocrine and or metabolic functions. The aims of the present study were to evaluate serum BPA level in marketing seller women with polycystic ovary syndrome (PCOS) and hormonal and metabolic effects of this exposure compared to a control paired group. In a case-control study, 62 PCOS women who work as marketing sellers and 62 healthy women with similar jobs were included. The two groups were body mass index (BMI)- and age-matched. Serum samples were analyzed for BPA content, fasting blood sugar (FBS), triglyceride, cholesterol, HDL and LDL levels, thyroid stimulating hormone (TSH) concentration, and LH:FSH ratio. Significant higher serum BPA content (0.48 ± 0.08 vs. 0.16 ± 0.04 ng/ml), triglyceride (103.05 ± 13.10 vs. 91.65 ± 12.52 mg/dl), cholesterol (165.05 ± 10.79 vs. 161.21 ± 10.31 mg/dl) levels and LH:FSH ratio (3.64 ± 0.86 vs. 0.62 ± 0.14) and significant lower TSH concentration (1.56 ± 0.68 vs. 2.15 ± 1.09 IU/ml) were detected in case against control group, respectively (P < 0.05). No significant differences were detected in FBS, LDL, and HDL levels between the two groups. Also, there were no significant associations between serum TSH concentration and BPA level neither in case (P = 0.269) nor in control (P = 0.532) groups. In BPA-exposed PCOS women, BPA level was higher than healthy women and this difference maybe the cause of significant differences in levels of triglyceride, cholesterol, TSH, and LH:FSH ratio. These observations confirm the potential role of BPA in PCOS pathophysiology.  相似文献   

15.
The aim of present study was to remediate chromium (Cr)-contaminated soil by Crotalaria juncea in the presence of Pseudomonas fluorescens. Inoculation of P. fluorescens in pot soil grown with C. juncea significantly increased (~2-fold) the water-soluble (Ws) and exchangeable (Ex) Cr contents in contaminated soil under greenhouse condition. It also enhanced the chlorophyll content by 92 % and plant biomass by 99 % as compared to the uninoculated C. juncea plant. The analysis showed that root and shoot uptake of Cr in C. juncea inoculated by P. fluorescens was 3.08- and 2.82-fold, respectively. This research showed that the association of C. juncea and P. fluorescens could be a promising technology for increasing the soil Cr bioavailability and plant growth for successful phytoextraction of Cr from the contaminated soil.  相似文献   

16.
A novel approach for the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of AgNO3 using culture supernatant of phenol degraded broth is reported in this work. The synthesis was observed within 10 h, and AgNPs showed characteristic surface plasmon resonance around 410 nm. Spherical nanoparticles of size less than 30 nm were observed in transmission electron microscopy. X-ray diffraction pattern corresponding to 111, 200, 220, and 311 revealed the crystalline nature of the as-formed nanoparticles. It was found that the colloidal solution of AgNP suspensions exhibited excellent stability over a wide range of ionic strength, pH, and temperature. The effect of pH and ionic strength indicated that stabilization is due to electrostatic repulsion arising from the negative charge of the conjugate proteins. The AgNPs showed highly potent antimicrobial activity against Gram-positive, Gram-negative, and fungal microorganisms. The as-prepared AgNPs showed excellent catalytic activity in reduction of 4-nitrophenol to 4-aminophenol by NaBH4. By manufacturing magnetic alginate beads, the reusability of the AgNPs for the catalytic reaction has been demonstrated.  相似文献   

17.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

18.
The wastewater discharged from leather industries lack biodegradability due to the presence of xenobiotic compounds. The primary clarification and aerobic treatment in Bacillus sp. immobilized Chemo Autotrophic Activated Carbon Oxidation (CAACO) reactor removed considerable amount of pollution parameters. The residual untreated organics in the wastewater was further treated in algal batch reactor inoculated with Synechocystis sp. Sodium nitrate, K2HPO4, MgSO4.7H2O, NH4Cl, CaCl2·2H2O, FeCl3 (anhydrous), and thiamine hydrochloride, rice husk based activated carbon (RHAC), immobilization of Bacillus sp. in mesoporous activated carbon, sand filter of dimensions diameter, 6 cm and height, 30 cm; and the CAACO reactor of dimensions diameter, 5.5 cm and height, 30 cm with total volume 720 ml, and working volume of 356 ml. In the present investigation, the CAACO treated tannery wastewater was applied to Synechocystis sp. inoculated algal batch reactor of hydraulic residence time 24 h. The BOD5, COD, and TOC of treated wastewater from algal batch reactor were 20?±?7, 167?±?29, and 78?±?16 mg/l respectively. The integrated CAACO system and Algal batch reactor was operated for 30 days and they accomplished a cumulative removal of BOD5,COD, TOC, VFA and sulphide as 98 %, 95 %, 93 %, 86 %, and 100 %, respectively. The biokinetic constants for the growth of algae in the batch reactor were specific growth rate, 0.095(day?1) and yield coefficient, 3.15 mg of algal biomass/mg of COD destructed. The degradation of xenobiotic compounds in the algal batch reactor was confirmed through HPLC and FT-IR techniques. The integrated CAACO–Algal reactor system established a credible reduction in pollution parameters in the tannery wastewater. The removal mechanism is mainly due to co-metabolism between algae and bacterial species and the organics were completely metabolized rather than by adsorption.  相似文献   

19.
Although the toxicological impact of metal oxide nanoparticles has been studied for the last few decades on aquatic organisms, the exact mechanism of action is still unclear. The fate, behavior, and biological activity of nanoparticles are dependent on physicochemical factors like size, shape, surface area, and stability in the medium. This study deals with the effect of nano and bulk CeO2 particles on marine microcrustacean, Artemia salina. The primary size was found to be 15 ± 3.5 and 582 ± 50 nm for nano and bulk CeO2 (TEM), respectively. The colloidal stability and sedimentation assays showed rapid aggregation of bulk particles in seawater. Both the sizes of CeO2 particles inhibited the hatching rate of brine shrimp cyst. Nano CeO2 was found to be more toxic to A. salina (48 h LC50 38.0 mg/L) when compared to bulk CeO2 (48 h LC50 92.2 mg/L). Nano CeO2-treated A. salina showed higher oxidative stress (ROS) than those treated with the bulk form. The reduction in the antioxidant activity indicated an increase in oxidative stress in the cells. Higher acetylcholinesterase activity (AChE) was observed upon exposure to nano and bulk CeO2 particles. The uptake and accumulation of CeO2 particles were increased with respect to the concentration and particle size. Thus, the above results revealed that nano CeO2 was more lethal to A. salina as compared to bulk particles.  相似文献   

20.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号