首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了揭示森林植被与流域径流量关系的空间分异规律,用生物物理/动态植被模式SSiB4/TRIFFID与流域水文模型TOPMODEL的耦合模式SSiB4T/TRIFFID进行青弋江流域和西南亚高山区的梭磨河流域各种气候情景的植被演替和碳水循环模拟。根据模拟结果并结合森林集水区试验结果,分析森林植被对流域径流量的影响。模拟结果表明,不存在水分胁迫时,在草地、灌木和森林3种植被类型中,森林蒸腾、冠层截留蒸发、蒸散和叶面积指数对温度变化最敏感;存在水分胁迫时,森林蒸腾、冠层截留蒸发、蒸散和叶面积指数对降水的变化最敏感。控制试验结果表明,青弋江流域阔叶林在植被向平衡态演替过程中取得支配地位,森林、灌木和草地蒸散分别为742.2、588.6和546.2 mm·a~(-1),森林蒸散明显大于灌木和草地,森林减小了径流量。梭磨河流域针叶林在植被向平衡态演替过程中取得支配地位,森林、苔原灌木和草地蒸散分别为387.8、444.3和387.5 mm·a~(-1),森林蒸散低于苔原灌木,森林增加了径流量。但随着温度增加,由于森林蒸散增加幅度明显大于苔原灌木和C3草地,森林蒸散逐渐大于苔原灌木,森林从增加径流量转变为减小径流量。对于湿润地区,随着温度增加,森林从增加径流量转变为对径流量没有明显影响和减小径流量。对于半湿润和半干旱地区,随着降水的减小,森林蒸散减小幅度明显大于灌木和草地,森林对径流量的影响随着降水量的减小而减小。气候的垂直地带性和水平地带性分布对森林植被与流域径流量关系的空间变化起着重要的控制作用。  相似文献   

2.
邓慧平 《生态环境》2012,21(4):601-605
为了揭示气温变化对西南山区流域森林水文效应的影响,用生物物理/动态植被模型SSiB4/TRIFFID与流域地形指数水文模型TOPMODEL的耦合模型SSiB4T/TRIFFID模拟了西南山区长江上游梭磨河流域森林水文效应对气温变化的响应,分析了气温变化对植被不同演替阶段的流域总径流和总蒸发以及冠层截流蒸发、植被蒸腾和土壤蒸发的影响。结果表明,(1)梭磨河流域森林(常绿针叶林)蒸腾与草和灌木差异小,森林蒸腾潜热比草和灌木仅高1~4 W.m-2,森林冠层截留蒸发高于草和灌木,但土壤蒸发明显低于草和灌木覆盖,森林覆盖流域总蒸发低于草和灌木覆盖甚至低于裸土蒸发,因此增加了流域总径流量,但森林增加径流的作用随土壤蒸发的减小而减小。(2)气温减小1℃将通过减小森林冠层截留蒸发和蒸腾而使森林增加流域总径流量的作用增加;相反,气温增加将增加森林冠层截留蒸发和蒸腾而使森林增加总径流量的作用减小。(3)当温度增加4℃,由于森林总蒸发较草和灌木明显增加,对于较高的土壤蒸发,森林增加总径流量的作用已不明显;对于较低的土壤蒸发,森林减小了流域总径流量。  相似文献   

3.
近50年贵州净生态系统生产力时空分布特征   总被引:5,自引:0,他引:5  
利用大气植被相互作用模型AVIM2(Atmosphere-Vegetation Interaction Model 2)估算分析了时间长度为50年、空间分辨率为0.02°×0.02°的贵州净生态系统生产力(NEP),分析了其对气候变化的响应。结果表明,(1) AVIM2模型能够模拟出贵州森林净初级生产力(NPP)的变化,模拟偏差随着树龄的增大而不断减小,其模拟效果优于综合模型。(2)1961-2010年,贵州NEP(以C计)平均值为23.9 g·m-2·a-1,碳源区面积比例仅为5%,且植被覆盖类型为南部部分常绿阔叶林。NEP总量的变动范围为-7.0~11.5 Tg ·a-1,平均每年吸收碳4.87Tg,碳汇量占中国区域的3~7%。(3)贵州境内31%的区域固碳能力下降明显(P<0.05)且主要集中在植被类型为常绿针叶林及农作物的北部地区,还有7%的区域固碳能力升高明显(P<0.05)且位于南部部分常绿阔叶林地区。(4)贵州NEP与气温显著负相关(P<0.01),与降水量显著正相关(P<0.05),气温对NEP的影响大于降水。  相似文献   

4.
基于MOD17A3的中国陆地植被NPP变化特征分析   总被引:4,自引:0,他引:4  
净初级生产力(Net Primary Productivity,NPP)作为生态系统物质与能量循环的基础,是区域和全球尺度碳循环和碳收支研究的重要组成部分。基于MOD17A3的NPP数据、地表覆盖类型MCD12Q1数据,采用趋势线分析法对中国2000—2015年陆地植被NPP时空格局、变化规律进行研究。结果表明,(1)2000—2015年,全国陆地植被平均NPP为273.5 g·m~(-2)·a~(-1),变化速率为1.415 g·m~(-2)·a~(-1),变化百分率为8.8%,全国植被NPP线性增长趋势达到显著水平(P0.05)。中国陆地植被NPP年总量在2.406~2.811 Pg·a~(-1)之间波动,平均值为2.635 Pg·a~(-1)。(2)中国平均植被NPP分布呈现西北低东南高、北方低南方高的基本格局。全国大部分区域,植被NPP水平较低,61.0%的区域植被NPP低于300 g·m~(-2)·a~(-1)。森林、草原、农田平均植被NPP分别为575.5、204.2和388.40 g·m~(-2)·a~(-1)。(3)中国大部分地区年NPP变化趋势不明显,占79.9%的陆地区域植被NPP变化趋势不明显,18.4%的陆地区域植被NPP呈显著增加趋势,仅1.7%的陆地区域植被NPP呈显著减少趋势。(4)占中国陆地总面积59.1%的区域植被NPP增减速率在2 g·m~(-2)·a~(-1)以内,33.4%的区域植被NPP增加速率在2 g·m~(-2)·a~(-1)以上,仅7.4%的区域植被NPP下降速率超过2 g·m~(-2)·a~(-1)。(5)中国大部分地区陆地植被NPP的增长百分率在5%以上,占陆地总面积48.1%,变化不大(变化百分率率在-5%~5%之间)的区域占41.0%,陆地植被NPP的降低率在5%以上的面积占10.8%。该研究对中国各区域生态资源管理,以及生态系统的建设具有一定的指导和借鉴意义。  相似文献   

5.
内蒙古草地NPP变化及其对气候的响应   总被引:8,自引:0,他引:8  
植被净初级生产力(Net Primary Productivity,NPP)是衡量植物群落在自然环境条件下生产能力的重要指标,NPP的变化直接反映了生态系统对环境气候条件的响应,因此可以作为生态系统功能对气候变化响应的研究指标.本文利用卫星遥感资料和地面气象观测资料,利用光能利用率模型估算了内蒙古地区1982-2003年4-10月草地NPP,并计算了与NPP密切相关的几个气候因子,分析了1982-2003年内蒙古地区草地NPP年际性变化规律、气候因子的年际变化规律,以及草地NPP对主要气候因子的响应关系.结果表明:1982-2003年内蒙古草地生长季的NPP呈波动中增加趋势,NPP的年平均递增率为C0.0036 g·m-2·Gr-1;草地NPP的空间分布与生物温度(BT)及可能蒸散率(PER)呈显著负相关,与降雨量(RAIN)、湿润度(K)及实际蒸散(AE)呈极显著正相关.内蒙古地区,草地NPP受降雨量(RAIN)及生物温度(BT)的影响较大.但NPP的变化受RAIN的影响更为明显;内蒙古地区不同草地类型的NPP变化对气候因子的响应略有不同.  相似文献   

6.
若尔盖高原实际蒸散量变化规律研究   总被引:1,自引:0,他引:1  
蒸散发是若尔盖高原湿地重要的水文过程,但目前缺乏对若尔盖地区实际蒸散发量的相关研究结果。为计算若尔盖高原实际蒸散量,利用1967—2011年若尔盖高原地区红原、玛曲和若尔盖3个地面气象站的逐日气象资料,应用FAO56推荐的Penman-Monteith(P-M)公式,依据单作物系数法计算若尔盖地区实际蒸散量,利用累积距平、Mann-Kendall趋势检验、回归分析等方法分析其变化规律。结果表明,草地蒸散量是若尔盖高原实际蒸散量的主要构成部分,草地蒸散量达362.3mm·a-1,占74.28%。湿地蒸散量为116.6 mm·a-1,占23.85%;近45年来若尔盖高原3个气象站的ET_c显著相关,ET_c平均值为488.6 mm·a~(-1)。ET_c的变化并不明显,呈缓慢增加趋势,绝对变率为12.75 mm,相对变率为2.62%。若尔盖高原ET_c变化与植被生长周期密切相关,高强度蒸散过程集中在短暂的夏季,7月份平均值达3.73 mm·d~(-1)。4、10月份气温低于0℃,ET_c为1.5~2.0 mm·d~(-1);通过回归分析得出ET_c与气象因子间的关系式,相关系数r0.9,P0.05,相对误差均低于0.6%;年ET_c与年均气温相关性达到0.01的显著性水平,年ET_c与年降水量、相对湿度呈负相关性;1968—1971年ET_c增加36.09 mm,相对降水量增加5.82%;1971—1981、1981—2005年ET_c分别减少12.22 mm和16.34 mm;2005—2011年ET_c增加41.75 mm,相对降水量增加6.41%。该地区水文过程中蒸散发相对于水分补给变化较小。  相似文献   

7.
草地NPP对气候变化的响应是全球变化研究的重要内容之一。为了明确草地NPP与水热的关系及实现南方草地NPP的大面积估算,本文以气候数据为基础,以南方草山草坡为研究对象,结合野外实测数据,分析南方草地NPP与月平均温度及平均降水量之间的关系,结果表明:南方草地NPP与月平均温度之间呈对数相关,相关系数r=0.462 9**(n=66);与月平均降水量之间呈线性正相关,相关系数r=0.783 6**(n=66),结果均达到了极显著水平(P<0.01)。在此基础上构建以温度和降水为自变量的南方草地NPP估算模型:NPP=Ln(T/16.7+2.5)×Sqrt(W/84.5+0.5)×(T+W),其中T为全年月平均温度(℃),W为全年月平均降水量(mm)。通过不同年份的实测数据对模型进行验证,草地NPP的模拟值和实测值之间有很好的相关性,R2为0.787,也达到极显著水平,RMSE和RRMSE均较小,分别为60.272和0.387,表明模型的模拟结果比较可靠。利用上述模型对2011年的南方草地NPP进行估算,模拟结果呈现一定的地带性,总体分布由西北向东南逐渐增加,其中四川西北部及其与云南交界等地区草地NPP值较小,基本在200 g·m-2以下,而海南、广西、江西以及广东等地草地NPP值较高,相当一部分地区达到700 g·m-2以上。通过分析可知,整个南方草地NPP平均值约为321.8 g·m-2左右,和实测结果比较接近。结果为南方草山草坡NPP估算提供了新的方法。  相似文献   

8.
了解小流域尺度上植物生长与岩石风化对CO2吸收的相对贡献对评估生态系统碳汇功能有重要意义,但过去的研究大多集中在某一单一过程且多基于特定土地利用类型。本研究以亚热带丘陵地区不同土地利用方式下的3个花岗岩小流域(F-100%森林、FA1-82%森林/18%农田和FA2-76%森林/24%农田)为研究区,自2010年3月至2012年2月定期监测了流域内的雨水、径流水,并采集了植物样品,分析其化学组成,系统研究了小流域尺度下植物生长和岩石风化的碳汇潜力及其影响因素。结果表明,F流域中不同林分(马尾松Pinus massoniana Lamb.阔叶树混交林、杉木Cunninghamia lanceolata(Lamb.)Hook.阔叶树混交林、马尾松林、杉木林、灌木林和竹Bambusoideae林)的碳密度和年均CO2吸收通量均不相同,碳汇潜力存在差异。不考虑施肥的影响,F、FA1和FA2流域植被的碳密度分别为44.5、37.3和35.0 t·hm-2,植被年均单位面积吸收CO2的量分别为10.5、11.8和12.4 t·hm-2·a-1,岩石风化消耗CO2的量分别为54.7×10-3、99.8×10-3和109.2×10-3 t·hm-2·a-1,均随农田比例的增加而增加。施肥对农田水稻(Oryza sativa)碳截留的直接贡献很小,但可通过多种途径间接影响农田的碳汇潜力。3个流域径流水中HCO3-的物质的量浓度随农田比例增加而增加,在一定程度上受到施肥的影响,扣除施肥对径流水中HCO3-的贡献外,FA1和FA2流域土壤风化吸收CO2的量分别为84.4×10-3和88.6×10-3 t·hm-2·a-1,仍高于F流域土壤风化吸收的大气CO2的量,说明农田土壤和森林土壤通过风化对CO2的固定存在差异。因此,农业活动在一定程度上影响了流域碳汇,不同土地利用方式下流域的碳汇潜力存在差异。尽管短时间尺度上植物生长对流域碳汇的贡献远高于岩石风化,但植物的收获与利用也可能加剧生态系统的碳排放,而硅酸岩风化在任何尺度上都是净碳汇,因而在地质时间尺度上硅酸盐风化对全球碳循环的影响不容忽视。  相似文献   

9.
研究降水的径流影响对干旱半干旱地区水资源管理具有重要指导意义,但目前对其空间尺度效应定量研究还不深入,限制了研究结果的跨尺度应用。以黄土高原泾河流域为例,利用13个子流域的多年降水和径流数据,定量评价了降水的径流影响随流域面积增大的尺度效应。研究表明:泾河流域降水和径流空间差异很大,13个子流域年降水量变化在311~563mm,年径流深变化在14.17~128.05 mm。在各子流域内,年径流深随年降水量呈显著线性增加(P0.05);在子流域间,年径流深随年降水量呈显著的指数型增加(P0.05)。降水能解释45%左右的径流变化。各子流域降水-径流线性关系参数(回归系数、截距)和径流系数的变异系数随流域面积增大呈非线性减少,证实了降水-径流影响存在空间尺度效应。其中,回归系数、截距常数项绝对值的变化符合对数函数,径流系数变异系数的变化符合幂函数,说明随空间尺度增大,流域降水形成径流的能力在减弱,但维持较稳定的降水-径流关系的能力在增强。基于降水径流关系及尺度效应量化分析,提出了考虑年降水量和流域面积的跨尺度年径流深计算关系:y=a·x_1·lgx_2+b·x_1+c·lgx_2+d,其中y为年径流深(mm),x_1为年降水量(mm),x_2为流域控制面积(km~2),a、b、c、d为拟合参数。利用13个子流域年均降水、径流数据和历年的降水、径流数据及流域面积分别对上式进行拟合,检验均达极显著水平(P0.01),决定系数r~2(0.788,0.510)均大于仅考虑降水影响的降水-径流指数关系(0.469,0.443),证明考虑尺度效应的降水-径流关系优于单纯的降水-径流关系。未来还需考虑土地利用方式、流域地形等因素的影响,以更深入地认识和应用降水-径流影响的空间尺度效应,指导干旱半干旱地区的水土资源管理。  相似文献   

10.
基于MOD16产品的三江平原蒸散量时空分布特征分析   总被引:2,自引:0,他引:2  
借助Arc GIS 10.2和ENVI 4.5/ID软件平台,利用MOD16遥感数据集,统计分析了三江平原2000─2014年地表蒸散量的年际和年内时空变化状况,探讨了不同地表类型下蒸散量的差异性变化特征。首先将原始的MOD16产品进行投影转换、数据拼接和重采样等操作,在此基础上计算三江平原地区蒸散多年年均值和月均值,并分析了三江平原蒸散的变化趋势。利用三江平原的矢量边界和土地利用分类数据统计了不同时间尺度序列下各种土地利用类型的蒸散平均值,进而分析不同地物类型下蒸散量的年纪变化和季节变化特征。研究表明,(1)三江平原年蒸散量总体上呈缓慢上升趋势,波动范围为447~521mm·a~(-1),年平均值为497 mm·a~(-1)。(2)年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5─9月份,最高、最低值分别出现在8月和1月。(3)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大。2000─2014年蒸散变化趋势不明显的面积占88%,蒸散显著、极显著增加(8.74%)的像元主要分布在集贤市区域和双鸭山山区,蒸散显著、极显著减少的像元主要分布在河道以及城市群附近。(4)土地利用特点影响着三江平原蒸散量的分布状况,蒸散强度大小按类型排序依次为森林(46.6 mm)草地(34.7 mm)农田(38.38 mm)荒漠(27.11 mm)。研究结果对于加强三江平原水资源管理与水分高效利用具有重要意义。  相似文献   

11.
准确评估区域尺度下森林生态系统固碳能力和趋势,对实现森林可持续经营和固碳增汇具有重要意义。基于全国第四次(1989—1993年)、第五次(1994—1998年)、第六次(1999—2003年)和第七次(2004—2008年) 4次全国森林资源清查数据,结合生物量估算模型和植被含碳系数,研究长江流域森林植被碳储量、碳密度分布特征及动态变化。结果表明,1989—2008年长江流域森林植被碳储量由1 345. 30 Tg增加到1 924. 98 Tg,年均增长率为2. 15%,比全国年均增长率高0. 29百分点,表明该流域森林植被碳汇功能不断增强。长江流域森林植被平均碳密度分别为42. 25、40. 34、41. 00和41. 42 Mg·hm-2。从森林龄组来看,长江流域森林植被碳储量主要集中于幼、中龄林和近熟林,这3者对林分碳汇的贡献超过85%,且幼、中龄林和近熟林碳密度远低于成熟林和过熟林,表明流域森林植被碳汇潜力巨大。从森林起源来看,流域内森林植被碳储量主要分布于天然林,占同期森林植被碳储量的78%以上,但人工林碳储能力不断提高,人工林碳储量占同期森林植被碳储量的比例也呈增加趋势,且碳密度明显低于天然林,表明人工林将在该流域森林植被碳汇功能中扮演重要角色。长江中上游是流域内森林植被碳储量主要贡献区,占全流域森林植被碳储量的96%以上。  相似文献   

12.
黄土丘陵沟壑区降雨集中且多为暴雨,暴雨所形成的坡面径流是造成黄土丘陵严重水土流失的主要原因,而草地植被对坡面径流有良好的抑制作用,草地植被能够通过改变坡面下垫面条件、土壤入渗率来阻延坡面径流的产生,因此揭示草地植被对坡面产流过程的作用及调控机理对于控制该地区的水土流失具有重大意义。该研究以黄土丘陵沟壑区典型草地坡面为研究对象,通过野外人工降雨,探究坡面降雨-产流过程对不同草被覆盖度的响应规律。结果表明,(1)坡面流达到稳定产流时间随着草地植被覆盖度的增大所需时间更长;稳定产流时间随着降雨强度的增大而减小。(2)在60 mm·h~(-1)的降雨强度时,草地植被覆盖度的阈值为75.38%;在90 mm·h~(-1)的降雨强度时,草地植被覆盖度的阈值为90.54%;而对于120 mm·h~(-1)的特大降雨强度时,草地植被覆盖对于径流的影响不显著。(3)坡面流的雷诺数和弗劳德数分别为40.07—695.22和0.33—1.56,阻力系数为1.42—43.53。降雨强度越大,草地植被覆盖度对这些参数的影响逐渐减弱。黄土丘陵的降雨特点多为暴雨,草被对坡面径流的调控作用在强暴雨下不是特别显著,应当辅以林木、灌木措施,才能更有效地控制水土流失。若是只考虑草地植被对坡面的调控作用,90%左右的草地植被覆盖度能够最大效率的应对黄土丘陵沟壑区的降雨状况。  相似文献   

13.
惠州西湖是典型的热带浅水富营养化湖泊,通过建立示范区,进行了鱼类调控和水生植被修复,示范区的水质得到显著改善。作者从2006年3月到9月对水生植被、浮游动物和鱼类进行采样分析。结果表明,水生植被的生物量3月份时为1.249kg·m-2,到9月份逐步增加到9.167kg·m-2,鱼类生物量在研究期间有所下降,渔获量从3月份的17.5kg到9月份时降低至7.61kg,示范区浮游动物丰度低于平湖,其中大型浮游动物丰度高于平湖,轮虫丰度则呈缩减,示范区和未进行修复的平湖浮游动物体长均主要分布在0到0.2mm之间,体长大于0.6mm的分布比例示范区的是未修复平湖的两倍,浮游动物的生物量二者差别不大。  相似文献   

14.
LUCC及气候变化对龙川江流域径流的影响   总被引:1,自引:0,他引:1  
土地利用与土地覆被变化(Land Use and Land Cover Change,LUCC)及气候变化对流域的径流变化影响巨大。为揭示龙川江流域LUCC和气候变化对径流变化的影响,基于SWAT模型,通过设置不同情景,定量分析了不同土地利用类型和气候要素对流域内径流的影响,并结合RCP4.5、RCP8.5两种气候情景对流域未来径流的变化进行了预估。结果显示,(1)SWAT模型在龙川江流域径流模拟中具有较好的适用性,可用SWAT模型进行流域的径流模拟,率定期的模型参数R~2、Ens分别达到0.73、0.71,验证期的模型参数R~2、Ens分别达到0.75、0.74。(2)从土地利用方面考虑,将农业用地转化为林地或草地,均会导致流域径流量的减少,而将林地转化为草地则会引起流域径流量的增加,农业用地、林地、草地三者对径流增加的贡献大小顺序为农业用地?草地?林地。从气候变化方面考虑,流域径流量与降雨量呈正比,与蒸发量呈反比。(3)2006-2015年间龙川江流域LUCC引起的月均径流增加幅度小于气候变化引起的月均径流减少幅度,龙川江径流的变化由气候变化主导,月均径流量总体上减少1.59 m~3·s~(-1)。(4)预估结果显示,RCP4.5和RCP8.5气候情景下,2021-2050年间龙川江流域径流减少趋势明显,分别为1971-2015年减速的2.65倍、3.43倍。  相似文献   

15.
采用森林资源清查调查相关植被指标(Simpson指数,物种均匀度指数和多样性指数)的方法,对湘北红壤坡地恢复区和退化区近20年来生态恢复过程中植被演变,生物生产力及碳平衡的变化情况进行了初步调查分析。结果表明,(1)恢复区植被在20年间经历了缓慢恢复、快速恢复和物种逐渐减少3个阶段,物种由32种增加至73种;退化区物种经历了先减少、后增加、再急剧减少3个阶段,物种由43种减少至27种。(2)恢复区草本的Simpson指数持续减少,灌木草本无明显规律,草本和灌木的物种均匀度呈降低态势,乔木多样性指数变化规律不明显;退化区草本各项多样性指标无明显变化趋势,灌木各项多样性指数均在稳步提高。(3)恢复区生物量和碳量稳步提高,2003─2012年间植被含碳量增加到原来的1.48倍;退化区生物量和含碳量总体下降,2003─2013年间植被含碳量从387 g·m-2降低到356.9 g·m-2。  相似文献   

16.
基于MOD16 遥感数据集,在ERDAS IMAGINE 2013 遥感图像处理系统的支持下,通过空间建模,计算蒸散多年年平均值和月平均值,并生成图像;结合陕西省矢量边界图、土地利用矢量图,统计不同时间尺度统计行政区域和不同土地利用类型的蒸散值.在ARCGIS 10 系统中,制作陕西省2000-2013 年年、月平均蒸散分布图.利用线性回归进行蒸散时间趋势分析,采用相关系数的统计检验方法进行显著性趋势检验.进而研究了陕西省2000-2013 年蒸散量的空间分布特征和时间变化规律,分析了不同类型下蒸散量的差异性变化特征.结果表明:(1)全省年蒸散量在波动中缓慢上升,波动范围为448.0~533.3 mm·a^-1,年平均值493.3 mm·a^-1.各月蒸散量的年际变化具有季节分异特征,秋末至仲春的月蒸散具有减少的趋势,春末至仲秋的蒸散具有增加的趋势.年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5-9 月份,最高、最低值分别出现在8 月和11 月.(2)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大.蒸散变化趋势不明显的面积占77.2%,蒸散显著、极显著增加的像元主要分布在陕北地区、关中地区西部和陕南丘陵浅山区,蒸散显著和极显著减少的像元主要分布在关中城市群.(3)土地利用特点影响着陕西省蒸散量的分布状况,蒸散强度大小按类型排序依次为森林〉草地〉农田〉荒漠.研究结果对于陕西有限水资源的合理利用以及水资源短缺问题的解决、旱涝监测和预警等研究具有重要意义.  相似文献   

17.
黄土高原典型区植被恢复及其对生态系统服务的影响   总被引:4,自引:0,他引:4  
植被恢复是全球陆地生态系统恢复的主要途径,我国的大规模植被恢复具有特色,产生了巨大效益和广泛影响。退耕还林(草)是我国重大植被恢复工程的典型代表,在黄土高原地区试验示范进而推广到全国。工程实施以来,工程区植被的恢复情况及其产生的影响已成为学术界关注的热点。选取陕西省延安市、榆林市和山西省吕梁市、临汾市作为黄土高原典型区,分析了土地利用变化情况。基于2000—2014年的年均植被覆盖度数据分析了植被恢复的时空变化趋势。在此基础上,以土壤侵蚀率、地表植被蒸散(ET)和植被净初级生产力(NPP)为指标,对典型区土壤保持服务、水文调节服务和植被碳固定服务的变化进行定量评估,以此分析植被恢复对主要生态系统服务的作用。结果显示:(1)工程实施以来林地和草地范围明显增加。(2)植被改善趋势明显,2000—2005、2000—2010和2000—2014年植被显著恢复的比例分别为5.8%、49.1%和79.0%。(3)土壤保持服务增强,2014年土壤侵蚀速率比2000年降低17.5%,中度侵蚀区降幅达53.7%,2000—2014年历年土壤保持率均在84%以上且呈波动增加。(4)水文调节服务增强,2000—2010年ET增加区域面积达到48 094.1 km2,占典型区总面积的39.6%。(5)植被碳固定服务提高,2000—2014年典型区NPP总体处于增加态势,NPP显著增加区域占全区总面积的60.3%,固碳总量增加45.4%。研究表明,退耕还林(草)工程实施以来,典型区植被得到了显著恢复,有效促进了区域生态系统服务的提高,植被恢复及其生态系统服务效应的时空变异特征值得关注。  相似文献   

18.
城市频发暴雨过程中,地表径流携带大量有机污染物进入水体,对水环境质量影响极其显著。以广州市帽峰山的水文试验场为基础,对比观测了林区3种下垫面类型(草地、水泥、沥青)的暴雨径流,及2种森林生态系统暴雨水文过程中有机污染物多环芳烃(PAHs)的含量特征,解析不同地表下垫面及森林生态系统对暴雨产流PAHs含量的影响。结果表明,(1)市区及林区10次暴雨∑16PAHs的平均质量浓度分别为126.1、112.7ng·L~(-1),市区暴雨中PAHs较林区高13.4ng·L~(-1)。(2)不同地表垫面径流中PAHs的污染负荷为沥青地表水泥地表草地地表,与林区暴雨中∑16PAHs相比,草地及水泥地表垫面分别表征出32%、13%的滤除效应,沥青地表垫面表征出111%的增加效应。(3)相对林区暴雨,阔叶林、杉阔混交林两种森林生态系统总径流∑16PAHs质量浓度分别下降了45.43、69.64ng·L~(-1),滤除效应分别达到40%、58%。阔叶林林冠层吸附了暴雨中14%的∑16PAHs,其地表层向径流中贡献了17%的∑16PAHs;杉阔混交林地表径流∑16PAHs浓度较暴雨低32%。本研究反映出广州市植被下垫面可有效滤除暴雨有机污染物,结果可为珠三角以及其他城市的生态环境保护提供依据。  相似文献   

19.
陆地生态系统碳循环研究是全球变化与地球科学研究领域的前沿与热点问题,准确地评估陆地生态系统碳储量和碳汇量是估算未来大气 CO2浓度,预测气候变化及其对陆地生态系统影响的关键。已有相关研究多集中于对区域生态系统碳储量和碳汇量的量的估算,而缺乏针对时间尺度上的变化过程的分析,以及对变化特征空间差异性的分析。本研究基于MODIS NPP数据,结合土地利用数据及土壤有机碳密度分布数据,对三江源地区2000─2010年草地生态系统碳储量时空变化特征进行了分析,同时,基于MODIS GPP数据及China FLUX和America FLUX数据,建立草地生态系统呼吸估算模型,对其碳汇量的时空变化特征进行了分析,以期明确该地区的碳储存能力及其变化过程,为该区域草地生态系统保护和管理提供科学依据。研究结果表明:(1)三江源地区草地生态系统总碳储量为53.38×108 t,平均碳密度为14.94 kg·m-2(以C计)。土壤和植被碳储量分别为53.07×108 t和0.31×108 t,平均碳密度分别为14.85 kg·m-2和86.77 g·m-2。(2)近10多年来,三江源地区草地生态系统多年平均碳汇量为0.4×108 t,单位面积平均碳汇量为86.80 g·m-2·a-1(以C计),表明该地区草地生态体统是一个碳汇。(3)2000年以来,三江源地区草地生态系统总碳储量及总碳汇量均呈波动增加趋势,碳汇功能有所增强。(4)三江源地区草地生态系统碳储量及碳汇量的空间分布格局及其变化趋势的空间分布均呈现明显的空间差异性。(5)MODIS GPP/NPP数据能够支撑较大尺度草地生态系统碳储量及碳汇量格局与变化趋势分析,较传统方法更为便捷高效。  相似文献   

20.
氮沉降是当今倍受关注的全球性环境问题.采用大田试验和室内培养的方法,研究大豆种子萌发和幼苗生长对氮沉降的响应.实验设4组处理(CK、T1、T2、T3),所施氮肥为NH4NO3,在室内培养实验中,4组处理的浓度分别为0、0.08、0.16、0.24mol/L.大田实验中,4组处理的氮施入量分别为0,50,100,150 kg·hm-2·a-1.结果表明:过量氮沉降对种子萌发有一定的抑制作用,降低了种子的发芽速度和发芽率;抑制了幼苗的生长速度,降低了植株的株高、叶面积和生物量,并减小了根冠比;随着氮施入量的增加幼苗的蒸腾速率逐渐降低,但叶片叶绿素含量逐渐增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号