首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定量化高寒草甸水分利用效率与气候因子的关系有利于预测未来气候变化对高寒草甸生态系统水分利用能力的影响。基于相关分析和多重逐步回归分析,研究了2010—2014年藏北高原3个海拔高度(4 300、4500、4 700 m)上的高寒草甸的水分利用效率与土壤温度、空气温度、土壤湿度、空气相对湿度、饱和水汽压亏缺的相互关系。结果表明,水分利用效率随着海拔的升高而增加,水分利用效率存在着显著的年际变异。相关分析表明,水分利用效率与土壤温度、空气温度、饱和水汽压亏缺存在正相关关系,与空气相对湿度存在负相关关系。多重逐步回归分析表明,土壤温度、土壤湿度和空气相对湿度共同解释了海拔4 300 m处的水分利用效率的季节变异,其中土壤温度的贡献最大;空气温度和土壤温度则分别解释了海拔4 500 m和4 700 m处的水分利用效率的季节变异。因此,环境温度主导着藏北高原高寒草甸的水分利用效率的季节变化,且暖干化的气候变化可能会提高藏北高原高寒草甸生态系统对水分的利用能力。  相似文献   

2.
气候变暖影响着高寒植物的生长及其碳含量和氮含量。为了探讨藏北高原高寒草甸群落地上部分碳含量和氮含量对气候变暖的响应,2008年7月在西藏当雄县草原站沿着海拔梯度(即4 300、4 500和4 700 m)布设了一个模拟增温实验(增温方法采用开顶式生长室,开口和底部直径分别为1.00和1.45 m,高度为0.40 m)。通过统计分析三海拔高度上的高寒草甸的2011年7月和2012年7月的群落地上部分碳含量、氮含量和碳氮比,探讨了藏北高原高寒草甸群落地上部分碳含量、氮含量和碳氮比对模拟增温的响应。结果表明,模拟增温显著降低了海拔4 300 m 2011年7月10.5%(2.43 g·kg-1)的氮含量(F=14.95,P=0.018),显著增加了海拔4 300 m 2011年7月12.1%(2.27)的碳氮比(F=22.67,P=0.009);显著增加了海拔4 700 m 2012年7月16.3%(4.44 g·kg-1)的氮含量(F=17.03,P=0.015),显著降低了海拔4 700 m 2012年7月8.6%(1.24)的碳氮比(F=12.60,P=0.024);对三海拔2011年7月(4 300 m:F=0.89,P=0.400;4 500 m:F=0.28,P=0.627;4 700 m:F=2.65,P=0.179)和2012年7月(4 300 m:F=0.000 4,P=0.985;4 500 m:F=4.21,P=0.109;4 700 m:F=2.40,P=0.196)的碳含量都无显著影响;对海拔4 300 m 2012年7月(氮含量:F=0.13,P=0.736;碳氮比:F=0.10,P=0.764)、4 500 m 2011年7月(氮含量:F=0.01,P=0.912;碳氮比:F=0.12,P=0.750)和2012年7月(氮含量:F=0.48,P=0.525;碳氮比:F=0.004,P=0.951)以及4 700 m 2011年7月(氮含量:F=0.78,P=0.428;碳氮比:F=0.01,P=0.942)的氮含量和碳氮比都无显著影响。因此,模拟增温对高寒草甸群落地上部分碳含量、氮含量和碳氮比的影响随着海拔高度和观测年份发生变化。  相似文献   

3.
关于高寒草地植被碳氮含量如何响应放牧活动还存在着很大的不确定性,这限制了准确预测高寒草地植被生长及其碳氮贮存量对人类放牧活动的响应。基于2008年7月布设在藏北高原3个海拔高度(4 300、4 500和4 700 m)上的围栏样地,通过对比分析围栏内外2011年8月份、2011年9月份和2012年8月份的植物群落地上和地下部分的碳含量、氮含量及碳氮比,探讨了藏北高原高寒草甸植物群落碳含量、氮含量和碳氮比对放牧的响应。与自由放牧条件下相比,围栏显著降低了海拔4 700 m处2.5%的植物群落地上部分碳含量,显著增加了海拔4 500 m处9.8%的植物群落地下部分氮含量,显著增加了海拔4 700 m处4.2%的植物群落地下部分碳含量。不同采样日期的植物群落碳氮含量对放牧的响应存在差异。因此,放牧活动对高寒草甸植物群落碳含量、氮含量和碳氮比的影响随着海拔高度和采样日期而发生变化。  相似文献   

4.
西藏高原青稞三种植被指数对红外增温的初始响应   总被引:3,自引:0,他引:3  
气候变暖影响着农作物生长及其植被指数。为了探讨西藏高原青稞(Hordeum vulgare Linn.var.nudum Hook.f.)归一化植被指数(normalized difference vegetation index,NDVI)、归一化绿波段差值植被指数(normalized green difference vegetation index,GNDVI)和土壤调节植被指数(soil adjusted vegetation index,SAVI)对气候变暖的初始响应,2014年5月在西藏达孜县布设了一个红外增温实验(3个水平,即对照,1 000和2 000 W红外增温)。通过对2014年6─9月利用农业多光谱相机获取的3种植被指数和利用HOBO微气候观测系统获取的两个深度(5和20 cm)的土壤温湿度的统计分析,探讨了西藏高原青稞植被指数对红外增温的响应及其与土壤温湿度的相互关系。结果表明,1 000和2 000 W的增温使5 cm的土壤温度(t5)分别升高了约1.62和1.77℃,使20 cm的土壤温度(t20)分别升高了约1.16和1.43℃;相反使5 cm的土壤湿度(SM5)分别下降了约1.8%和14.1%,使20 cm的土壤湿度(SM20)分别下降了21.6%和14.7%。1 000 W的增温使NDVI、GNDVI和SAVI分别增加了约2.4%、4.3%和0.5%;2 000 W的增温则使NDVI、GNDVI和SAVI分别增加了约5.5%、5.3%和4.8%,尽管增加幅度并不显著。单因子回归分析表明,t5与NDVI(r2=0.110,P=0.026)和GNDVI(r2=0.254,P=0.000 4)为负相关,而与SAVI无关(r2=0.069,P=0.082);t20与GNDVI为负相关(r2=0.218,P=0.001),而与NDVI(r2=0.040,P=0.190)和SAVI(r2=0.014,P=0.443)无关;SM5与NDVI(r2=0.277,P=0.000 2)、GNDVI(r2=0.394,P=0.000 0)和SAVI(r2=0.208,P=0.002)为正相关。SM20与GNDVI为正相关(r2=0.193,P=0.003),而与NDVI(r2=0.059,P=0.107)和SAVI(r2=0.037,P=0.209)无关。多重回归分析表明,SM5主导着NDVI、GNDVI和SAVI的变异。偏相关分析表明,NDVI、GNDVI和SAVI与SM5的相关系数分别为0.442(P=0.003)、0.412(P=0.007)和0.404(P=0.008);与SM20的相关系数分别为-0.042(P=0.792)、0.051(P=0.749)和-0.033(P=0.837);与t5的相关系数分别为-0.154(P=0.332)、-0.019(P=0.907)和-0.170(P=0.282);与t20的相关系数分别为0.228(P=0.147)、-0.041(P=0.795)和0.268(P=0.086)。因此,红外增温引起的干旱抑制了青稞的生长,进而影响了植被指数,即植被指数的不显著变化可能与红外增温引起的土壤干旱有关。  相似文献   

5.
高寒草地是青藏高原生态系统的主体,高寒草地物种多样性和生物量沿海拔梯度的空间分布格局在气候变化及人为干扰的双重影响下已发生重大变化。为明晰海拔对物种多样性和生物量的影响,以藏北地区那曲市罗玛镇高寒草地为研究对象,于2018年8月采用样方调查法对不同海拔梯度高寒草地植物高度、盖度、地上生物量及物种多样性沿海拔变化进行调查和统计分析,探讨藏北高寒草地物种多样性和地上生物量在海拔上的变化规律及二者的关系。研究表明:(1)植物盖度和地上生物量分别由海拔4 600 m的89.0%和64.7 g·m~(-2)降至4 800 m的67.3%和41.8 g·m~(-2),即植物盖度和地上生物量随海拔的升高呈线性降低的趋势;(2)不同海拔梯度间植物物种组成存在较大差异,高海拔段中旱生禾本科植物逐渐被耐寒喜湿植物取代;(3)物种丰富度和Shannon-Wiener指数沿海拔呈单峰分布格局,而E.Pielou均匀度指数则呈U型分布格局;(4)物种丰富度和Shannon-Wiener指数与地上生物量呈负二次函数关系;地上生物量与土壤温度呈指数增长趋势,与土壤湿度呈指数降低的趋势。研究结果初步揭示了藏北高原高寒草地不同海拔梯度物种多样性及其生物量的垂直分布差异,以及不同海拔梯度间水热组合差异对物种多样性及其生物量的影响。  相似文献   

6.
掌握三江源草地植被变化对草地恢复和生态建设工程具有重要的指导意义。以三江源草地生长季平均NDVI(GNDVI)为研究对象,基于趋势分析和偏相关分析方法,分析了三江源区2000—2015年高寒草地生长季GNDVI年际波动及其对海拔变化的敏感性,旨在阐明三江源高寒草地年际波动及其在不同水热组合环境下的响应规律。研究结果表明:自2000年以来,三江源地区暖湿化和各类生态工程的实施使得三江源区高寒草地GNDVI表现出上升的趋势,由于气候、植被生理生态过程等因素的影响,三江源区高寒草地GNDVI存在较大的年际波动,其中草甸区的年际波动对三江源全区草地GNDVI年际波动贡献度达75.4%,草原区仅有24.6%;三江源草地GNDVI多年均值随海拔的升高而降低,而GNDVI的变化趋势随海拔的升高而升高。低海拔地区的草地占比虽小,但其GNDVI的年际波动对三江源全区高寒草地年际波动的贡献度远大于高海拔地区;无论三江源全区、草甸区还是草原区,低海拔地区GNDVI的年际波动受降雨主导,而温度的变化是高海拔地区GNDVI年际波动的主导因子。  相似文献   

7.
藏北高原高寒草甸光能利用效率对增温增水的响应   总被引:1,自引:0,他引:1  
量化植被光能利用效率对增温增水的响应是全球碳循环研究的重要组成部分。为了探讨藏北高原高寒草甸光能利用效率对气候变暖和降水增多的响应,2014年6月在藏北高原高寒草甸布设了1个增温增水实验平台,采用了完整的两因子(增温和增水)实验设计,每个因子设置3个处理水平(不处理、低幅度和高幅度处理),共9个处理组合。设置40 cm和80 cm的开顶式生长箱实现两个幅度的实验增温(分别增加了0.34℃和1.11℃的日最低空气温度),低幅度和高幅度增水处理分别增加了15%和30%的降水。基于中分辨率成像光谱仪的植被光能利用效率算法,利用观测的饱和水汽压差和日最低空气温度模拟了2014—2016年生长季节(6—9月)植被的光能利用效率。结果表明,增温对日最低空气温度(F=39.10,P=0.000)、饱和水汽压差(F=47.45,P=0.000)和光能利用效率(F=4.20,P=0.032)都有显著影响,而增水对饱和水汽压差(F=5.72,P=0.012)有显著影响。增温引起的光能利用效率的变化与增温幅度表现为二次曲线关系,与增温引起的饱和水汽压差的变化量表现为负相关关系。增水处理对光能利用效率无显著影响,且增水引起的光能利用效率的变化与增水引起的饱和水汽压差的变化量呈负相关关系。因此,降水增多可能对藏北高原高寒草甸的光能利用效率无显著影响,而光能利用效率随着增温幅度的变化而变化。  相似文献   

8.
宁夏不同草地类型土壤有机碳组分特征   总被引:2,自引:0,他引:2  
宁夏草地生态系统对宁夏生态环境、生物多样性保护和区域经济发展具有重要作用。沿宁夏降雨梯度带,从北到南选择荒漠草原、典型草原和草甸草原3个草地类型的地上植物和土壤进行取样,对3个草地类型土壤有机碳组分(易氧化有机碳、颗粒有机碳、微生物碳和惰性碳)分布特征及其与环境变量的相关关系进行研究。结果表明,土壤总有机碳与惰性碳含量表现为山地草甸典型草原荒漠草原;土壤颗粒有机碳和微生物量碳含量表现为荒漠草原山地草甸典型草原;土壤易氧化有机碳表现为典型草原荒漠草原山地草甸。3种草地类型活性有机碳占总有机碳比例均较低,而惰性碳占总有机碳比例在23.03%~86.63%之间。RDA分析表明环境变量对土壤有机碳组分总解释量为99.6%。Pearson相关性分析表明土壤活性有机碳与土壤总有机碳之间相关性均不显著,而土壤惰性碳和总有机碳之间高度正相关(r=0.99,P0.01)。土壤总有机碳与环境变量的相关性分析表明土壤总有机碳与海拔(r=0.81,P0.01)、土壤含水率(r=0.90,P0.01)、土壤全氮(r=0.97,P0.01)、年降雨量(r=0.87,P0.01)、物种丰富度(r=0.88,P0.01)和地上生物量(r=0.86,P0.01)正相关,而与土壤容重(r=-0.90,P0.01)、年均温(r=-0.78,P0.01)负相关。研究区3种草地类型的活性有机碳比例较低,这表明土壤有机碳循环速率不高,有机碳库较为稳定,其中草甸草原的总有机碳和惰性碳含量均高于其他类型,稳定性最高。气候温、湿度特征,地上植被群落结构和生物量以及土壤水分和氮素特征是影响影响宁夏草地土壤有机碳含量重要因素。  相似文献   

9.
动态监测植被覆盖的时空演变,深入研究植被与气候变化和人类活动之间的响应关系,揭示区域环境状况的演变和变迁有着重要的现实意义。山东省植被覆盖率高,为了更好地了解自然因素和土地利用变化对山东地区植被的影响,研究利用MODIS-EVI、气象及城市化数据,通过分析2000—2008年7月月均EVI植被指数与月均温、降水及城市建成区面积之间的关系。得出如下结论:山东省的植被指数在其西部地区和南部地区值比较高;7月EVI指数与月平均气温存在相关系数r=-0.43的负相关关系,EVI指数与月降水间存在相关系数r=0.38的弱正相关关系,与城市建成区面积相关系数为0.30,表明山东地区植被指数的变化与气温的关联度要大于其与降水的关联度。此外,研究考虑了离海远近,将山东地区划为东部和西部地区。从地理位置来看,东部区域EVI值与降水之间的相关度普遍低于西部地区,而东部地区植被指数与气温的相关度要高于西部地区,东部地区在城市化进程加快的同时应更注意环境的保护与人工植被的种植。  相似文献   

10.
根系碳(C)氮(N)磷(P)密度影响植物与土壤间碳氮磷养分的循环过程,从而影响生态系统的地球化学循环。以申扎县高寒草原、高寒草甸草原和高寒草甸3种草地为对象,探究非生长季(4月)和生长季(8月)3种高寒草地根系C、N、P密度的分布规律及其差异。结果表明,(1)3种草地根系C、N、P密度在两个时期均呈现"T"字型空间分布,即3种草地根系C、N、P密度均随着土壤深度的增加而降低,且整体上高寒草甸的养分密度显著高于其他两种草地。3种草地根系C、N、P密度范围分别为57.287—1 130.753、1.457—38.243、0.090—3.217 g·m~(-2)。(2)3种草地的C、N、P密度具有显著的季节差异。生长季,高寒草原总地下C、N密度显著高于非生长季,分别高出非生长季47.822%和60.910%,而总地下P密度无显著差异;而生长季高寒草甸草原总的和每层的地下C、N、P密度显著低于非生长季。高寒草甸总地下C、N、P密度表现为生长季高于非生长季。高寒草原和高寒草甸增加的养分密度集中在0—10 cm深度。高寒草甸、高寒草原及高寒草甸草原的物种组成不同,土壤养分含量差异及土壤水分状况的不同可能是导致3种草地根系养分密度差异的原因。本研究可以为高寒草地根系养分密度季节变化提供基础资料,进一步认识草地根系在养分循环中的作用提供理论支持。  相似文献   

11.
研究沿海拔梯度对植被群落的影响,有助于人们进一步理解未来气候变化背景下,高寒生态系统结构和功能的响应模式。选择念青唐古拉山东南坡的典型生境,包括从海拔4 775 m到5 305 m全部范围内的植物群落。沿着海拔梯度每隔约30m设置1个样带,并在各个样带上随机设置样方,调查样方内物种数、物种高度、物种盖度、物种频度。采用群落多样性指数、应用双向指示种分析法(TWINSPAN)和除趋势对应分析(DCA)等方法,对西藏念青唐古拉山东南坡高山草甸植物群落进行了分析。TWINSPAN将所有植物群落划分为5种类型,分别为:香柏(Sabina pingii var.wilsonii)+高山嵩草(Kobresia pygmaea)灌丛草甸群落;高山嵩草+圆穗蓼(Polygonum macrophyllum)草甸群落;高山嵩草+矮生嵩草(Kobresia humilis)草甸群落;高山嵩草草甸群落;流石滩冰缘植被群落。这些群落分别位于不同的海拔高度。分类结果很好地反映了植物群落类型分布与地形、海拔的关系,并在DCA二维排序图上得到了较好的验证。念青唐古拉山东南坡草地植物群落多样性在高海拔、低海拔地区较低,中间海拔高度地区较高。植物群落多样性指数呈现出草本层灌丛层流石滩冰缘的特征。多样性指数与海拔高度之间的趋势模拟均呈负二次函数关系,单峰式函数关系能较好地表达不同海拔梯度植物群落多样性和均匀度与海拔之间的分布格局。  相似文献   

12.
黄河源区退化高寒草地土壤种子库:种子萌发的数量和动态   总被引:13,自引:0,他引:13  
对青藏高原黄河源区不同退化程度高寒草地的土壤种子库土样用土壤分析筛进行浓缩,并以萌发法分析土壤种子库萌发种子数量和动态.结果表明,孔径0.25~2 mm的土壤分析筛分离土样中萌发种子可达萌发种子总量的85%~97%,而小于0.25 mm的土样中未发现种子.因此,用0.25 mm孔径大小的土壤筛对高寒草地土壤种子库土样进行大规模浓缩是一种方便、可靠的方法.4种不同退化程度高寒草地(A:未退化草甸;B:轻度退化草甸;C:中度退化草甸;D:重度退化草甸)的土壤种子库在实验室条件下萌发的种子数量分别为:A 1 194~3 744粒/m2,平均2 421.3粒/m2;B 5 376~1 0912粒/m2,平均7 786.7粒/m2;C 2 304~1 3216粒/m2,平均8 695.5粒/m2;D 4 768~12 352粒/m2,平均8 125.9粒/m2.除样地A外,其它3个样地的可萌发种子数量差异不大.单子叶植物种子在培养到d 10左右开始萌发,双子叶植物在5~7 d内开始萌发,前者3 wk后基本不再萌发,后者5 wk左右停止萌发.4个样地土壤种子库种子萌发主要集中在第2~3周,并表现出近似单峰型格局.图1表3参39  相似文献   

13.
增温、刈割对高寒草甸地上植被生长的影响   总被引:2,自引:0,他引:2  
近些年由于气候变化和土地利用方式变化的双重影响,高寒草甸植被逐渐表现出退化现象。探讨高寒草甸植被生长特征在气候变化和人类活动中的动态变化规律,对高海拔地区植被的保护和合理利用,防止草地退化和沙漠化发生具有重要意义。以青藏高原高寒草甸为研究区,利用增温实验模拟气候变暖、刈割实验模拟人类放牧,采用随机区组设计,设置对照、增温、刈割、增温+刈割交互作用四种实验处理,于2012─2013年植被生长季调查高度、盖度和地上生物量,研究高寒草甸地上植被生长特征对增温、刈割的响应,以此探讨青藏高原高寒草甸地上植被在气候变化和人类活动中的变化趋势。结果表明:(1)夏季是高寒草甸植被生长的最佳季节,其中7月是其生长的最佳月份;高寒草甸地上植被生长特征年内生长季和年际间的变化趋势差异较大,表现为植被高度在生长季中期高于初期和末期(P0.05),植被盖度和地上生物量在生长季中期和末期高于初期(P0.05);2012年的植被高度和地上生物量略高于2013年(P0.05),但植被盖度略低于2013年(P0.05)。(2)植被高度、盖度和地上生物量在增温第2年(2012年)的各实验处理间均未出现显著差异(P0.05),而在第3年(2013年)开始出现显著差异(P0.05),其中2年刈割显著降低植被高度和地上生物量(P0.05),3年增温和2年刈割的交互作用显著降低植被盖度和地上生物量(P0.05)。以上结果表明,增温、刈割对高寒草甸地上植被生长的影响在短期和长期尺度上存有差异,初期并不显著,但随着时间推移,影响开始加强。  相似文献   

14.
调查分析了祁连山中段不同海拔土壤颗粒有机碳及其与植被的关系.结果显示,土壤颗粒组分比例在0~15 cm和15~35cm土层随海拔升高而呈现下降趋势(P>0.2);土壤颗粒有机碳比例在0~15 cm土层随海拔升高也呈现下降趋势(P≤0.001).土壤颗粒组分比例0~15 cm土层在阴坡3 000 m~3 500 m、15~35 cm土层在阴坡3 200 m和3 500 m及半阴坡2 200和2 800 m处较高;土壤颗粒有机碳比例0~15 cm土层在阴坡3 000 m和3 200 m、半阴坡2 200 m和2 800 m,以及15~35 cm土层在阴坡3 200 m和3 500 m、阳坡3 300 m和3 500 m处较高(P<0.05).土壤颗粒有机碳和颗粒组分碳含量随海拔升高变化不显著(P<0.9).土壤颗粒有机碳含量0~15cm土层在阴坡3 000 m~3 500 m、15~35 cm土层在阴坡3 000 m~3 500 m及阳坡3 300m处较高;土壤颗粒组分碳含量0~15 cm土层在阴坡3 000 m~3 400 m和阳坡3 300 m,以及15~35 cm土层在阴坡3 200 m和3 400 m及阳坡3 300 m处较高.土壤颗粒组分比例0~15 cm土层在森林和灌丛草甸中较高;15~35 cm土层在森林、灌丛草甸和干旱草原中较高(P<0.05).土壤颗粒有机碳比例0~15 cm土层在荒漠草原和干旱草原,以及15~30 cm土层在森林和灌丛草甸中较高(P<0.05).土壤颗粒组分碳含量0~15 cm和15~35 cm土层在森林和灌丛草甸中较高(P<0.05).土壤颗粒有机碳含量0~15cm和15~35cm土层在森林中最高(P<0.05).土壤颗粒组分碳含量和颗粒有机碳含量与土壤有机碳含量有显著的正相关性(P<0.001),土壤颗粒有机碳含量与颗粒组分碳含量也有显著的正相关性(P<0.001),土壤颗粒组分比例与有机碳含量相关性不显著(P=0.15),土壤颗粒有机碳含量与颗粒组分比例有显著正相关性(P<0.005).结果说明祁连山中部北坡土壤有机碳稳定性受植被和海拔共同影响,荒漠草原和干旱草原表层土壤有机碳稳定性较低,森林和灌丛草甸土壤中非保护性碳含量较高.  相似文献   

15.
微生物是土壤的重要组成部分,反映了土壤的生物活性,同时也是土壤有机质和养分转化与循环的动力。高寒草地是藏北高原分布面积最大的生态系统类型,不仅是亚洲中部高寒环境中最为典型的自然生态系统之一,而且在世界高寒地区亦具有代表性。为了解藏北不同类型高寒草地土壤微生物群落结构特征,比较了藏北5种高寒草地(高寒草甸、高寒草原、高寒草甸草原、高寒荒漠草原和高寒荒漠)的土壤磷脂脂肪酸(PLFA)指纹特征,并进一步分析其与土壤有机碳、总氮等土壤化学性质的关系。藏北5种高寒草地土壤PLFA中16:0和18:1w9c含量高,土壤PLFA主要包括直链饱和脂肪酸、直链单不饱和脂肪酸、支链饱和脂肪酸和环丙烷脂肪酸,其中直链单不饱和脂肪酸(27.77%~36.66%)和支链饱和脂肪酸(30.15%~36.61%)占比较高,环丙烷脂肪酸(3.48%~10.16%)仅占较少部分。高寒草甸土壤总PLFA含量、细菌、真菌、放线菌、革兰氏阴性菌和革兰氏阳性菌PLFA含量最高,其含量分别是其他4种草地类型土壤的2.00~6.45,2.01~8.88,1.82~3.52,1.61~5.37,2.01~9.17和2.06~10.94倍。大部分PLFA分子集中于高寒草甸、高寒草原和高寒草甸草原土壤中,另外两种高寒草地土壤仅含少量微生物;土壤微生物在5种类型草地中的样点基本分散,而在每种类型草地样点中基本集中,表明微生物群落结构在不同草地类型土壤中存在明显差异,而在同一类型草地土壤中相近。土壤总PLFA,细菌、真菌、放线菌、革兰氏阴性细菌和革兰氏阳性细菌PLFA含量与土壤有机碳、总氮、铵态氮和硝态氮之间存在极显著相关性(P0.01),表明土壤碳、氮含量与土壤微生物间存在极为显著的相互刺激关系。该研究通过量化藏北不同类型高寒草地土壤的PLFA指纹特征,并分析其与土壤化学性质的关系,为进一步研究高寒草地生态系统土壤微生物群落结构特征提供理论依据。  相似文献   

16.
基于ETM+图像的植被覆盖度遥感估算模型   总被引:6,自引:0,他引:6  
植被覆盖度(VFC)的定量遥感是多种地表过程研究的迫切需要.文章选用南京市一幅Landsat 7 ETM 图像,经大气校正后提取了归一化植被指数(NDVI),与地面实测的植被覆盖度进行回归分析,建立了1~4次多项式关系模型.结果表明,NDVI与VFC呈极显著的正相关关系(r = 0.874, P < 0.001).在NDVI-VFC的1~4次多项式关系模型中,模型幂次越高,拟合程度越好.综合考虑模型的精度和稳定性,3次多项式模型作为最优模型推荐使用:VFC = -1.3438 NDVI 3 0.9774 NDVI 2 0.9988 NDVI 0.1507 (R2 = 0.7961, RMSE = 0.1094),该模型精度在植被中等密集区域(VFC=0.4~0.8)最高,植被稀疏区域(VFC < 0.4)最低,植被密集区域(VFC > 0.8)居中.模型可直接用于全图像的VFC计算,并可通过植被指数的校准,进行推广使用.  相似文献   

17.
在全球变化的背景下,为了研究藏北高寒放牧草甸的生态系统呼吸和土壤呼吸特征,沿着3个海拔高度(4 300、4 500和4 700 m)观测了2010年7-9月白天的呼吸通量。同时,观测了同期的土壤温度、土壤水分含量、空气温度和相对湿度,在定性分析土壤水分含量和呼吸通量关系的基础上,将其分成低、中和高3个水平,在此基础上,分析生态系统呼吸、土壤呼吸与土壤温度、土壤水分含量、空气温度以及相对湿度的关系。结果表明,空气温度是决定生态系统呼吸和土壤呼吸变异的主导因子;生态系统呼吸、土壤呼吸以及裸地的土壤呼吸的Q10值分别为1.83~3.07、1.54~4.13和1.29~2.89;总体而言,生态系统呼吸和土壤呼吸Q10值随着海拔的升高和土壤水分含量的增加而增大。  相似文献   

18.
植物地下生物量是高寒生态系统重要的碳库,可以反映植物对极端环境的适应特征。以高寒草原、高寒草甸草原和高寒草甸3种主要草地类型为对象,对比分析了非生长季和生长季的地下生物量,探究不同类型的高寒草地地下生物量分配机制及其动态变化过程。结果表明:(1)3种草地地下生物量的空间分布在生长季和非生长季均呈现"T"字型分布。在这两个时期,3种草地0~10 cm的生物量占总地下生物量的比例均表现为:高寒草原(91.20%,94.72%)高寒草甸草原(83.17%,92.07%)高寒草甸(67.04%,68.38%),且其比例在生长季均有增加;(2)两个时期高寒草甸地下生物量均最高(1 620.39±71.09)g·m~(-2),(3 950.08±291.46)g·m~(-2),非生长季高寒草原最低(136.24±9.14)g·m~(-2),生长季高寒草甸草原最低(133.97±6.93)g·m~(-2);高寒草甸和高寒草原地下生物量在生长季都有显著增加,而高寒草甸草原显著减少;(3)地下生物量与土壤含水量有显著的正相关关系,在同样的温度条件下,土壤含水量是地下生物量的重要影响因子;而生长季是藏北地区降水比较集中的时期,土壤表层水分的增加促使根系向表层生长。  相似文献   

19.
实验增温对西藏高原玉米田土壤呼吸的影响   总被引:1,自引:0,他引:1  
青藏高原农业区正经历着明显的气候变暖,但气候变暖如何影响高寒农业生态系统碳循环目前仍不明确。土壤呼吸是第二大陆地生态系统碳通量,高寒农业生态系统土壤呼吸对气候变暖的响应的不确定性限制了气候变化背景下人类对青藏高原高寒生态系统碳循环的预测能力。2015年4月在西藏玉米田采用开顶式生长箱进行模拟增温试验,旨在探究气候变暖对土壤呼吸及其温度敏感性的影响。在2015年玉米生长季节的5—8月份,利用Li8100土壤通量观测系统测定了6次土壤呼吸日变化(8:00—20:00),并利用HOBO微气候观测系统观测了5 cm深处的土壤温度和土壤湿度。结果表明,实验增温显著提高了5 cm深处的土壤温度(t=11.93,P=0.000),增幅为3.22℃,同时显著降低了5 cm深处的土壤含水量,降幅为0.04m~3·m~(-3)(t=4.87,P=0.008)。对照和模拟增温处理的土壤呼吸速率分别为6.79μmol·m~(-2)·s~(-1)和7.34μmol·m~(-2)·s~(-1),两者间无显著差异(F=1.65,P=0.235)。尽管如此,土壤呼吸仍存在着显著的日变化(F=137.66,P=0.000)和季节变异(F=54.48,P=0.000)。对照和模拟增温处理的土壤呼吸温度敏感性分别为1.70和1.77,两者间也无显著差异(t=2.69,P=0.100)。土壤温度解释了36%的对照处理的土壤呼吸变异,而土壤温度和土壤湿度共同解释了62%的土壤呼吸变异。因此,3.22℃的土壤增温没有显著改变土壤呼吸及其温度敏感性,这与3.22℃的土壤增温引起了土壤湿度的降低有关。  相似文献   

20.
鲁春霞  于格  谢高地  肖玉 《生态环境》2007,16(4):1289-1293
青藏高原是我国重要的生态屏障,具有重要的水源涵养功能。高寒草地生态系统退化将严重地影响高原的水源涵养功能。为了定量研究人类活动对青藏高原高寒草地水分保持功能的影响,采用大型风洞实验,模拟人类不同的干扰方式和干扰程度对高寒草地土壤水分保持功能的影响。实验样品采自青藏高原三个草地类型:高寒草甸、草原化草甸和高寒草原。干扰方式包括破坏草地地上部分和根系,干扰程度包括轻干扰、中度干扰、重度干扰和全部破坏。实验结果表明,地上部分破坏后,土壤含水率均有下降,降幅分别为:QZ1为6.9%~9.2%、QZ2为6.8%~10.1%、QZ3为9%~10%;当根系遭到破坏后土壤含水率的降幅则分别为:QZ1为16%~30%,QZ2为17.25~32.1%,QZ3为22%~50%,显然,根系破坏后土壤含水率降幅远大于地表植被破坏后的情形。因此,植被根系是高寒草地水分保持功能的关键。随着干扰程度的加剧,土壤含水率在迅速下降。从试验模拟结果看,三个草地类型中土壤水分保持功能分别是高寒草甸>草原化草甸>高寒草原。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号