首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Optimising the management of invasive plants requires the identification of the population size outcomes for alternative management strategies. Mathematical models can be useful tools for making such management strategy comparisons. In this paper we develop a generic landscape meta-population model and apply it to the weedy grass, Nassella trichotoma, an invasive species occupying approximately 800 land parcels, predominantly pastoral farms, in the Hurunui district, North Canterbury, New Zealand. Empirical evidence reveals that this meta-population is currently stable (at a median density of 6 plants ha−1) under a community strategy requiring manual removal (termed ‘grubbing’) of plants annually from all land parcels. Reduction in population size requires an alternative management strategy. Field data, collected over a 12 year period, were used to provide stochastic parameter values for land parcel size, carrying capacity, rates of local population growth and grubbing.The model reveals that at steady state, the most significant contribution to population growth on a land parcel comes from within the land parcel itself; the expected annual per capita growth on an individual land parcel is 4 orders of magnitude greater than the expected annual contribution from plants arising from other land parcels. This result implies that many of the farms currently supporting N. trichotoma may pose little or no threat to, nor are threatened themselves by, other farms infested by the weed. However, the steady state distribution (of the weed's population density) was sensitive to the spread rate, revealing a need for data on this process. It was also sensitive to how any increase in the grubbing rate is distributed; increasing it via a uniform distribution U(0, 1) where all rates between 0 and 100% year−1 are equally probable did not affect the steady state, whereas increasing the rates via the uniform distribution U(0.25, 0.75) resulted in fewer farms with high population densities. In general the model provides a basis for exploring the effects of a wide range of alternative grubbing strategies on population growth in N. trichotoma.  相似文献   

3.
《Ecological modelling》1999,114(2-3):137-173
Two-dimensional, 31-segment, 61-channel hydrodynamic and water quality models of Lake Marion (surface area 330.7 km2; volume 1548.3×106 m3) were developed using the WASP5 modeling system. Field data from 1985 to 1990 were used to parameterize the models. Phytoplankton kinetic rates and constants were obtained from a related in situ study; others from modeling literature. The hydrodynamic model was calibrated to estimates of daily lake volume; the water quality model was calibrated for ammonia, nitrate, ortho-phosphate, dissolved oxygen, chlorophyll-a, biochemical oxygen demand, organic nitrogen, and organic phosphorus. Water quality calibration suggested the model characterized phytoplankton and nutrient dynamics quite well. The model was validated (Kolmogorov–Smirnov two-sample goodness-of-fit test at P<0.05) by reparameterizing the nutrient loading functions using an independent set of field data. The models identified several factors that may contribute to the spatial variability previously reported from other research in the reservoir, despite the superficial absence of complex structure. Sensitivity analysis of the phytoplankton kinetic rates suggest that study site-specific estimates were important for obtaining model fit to field data. Sediment sources of ammonia (10–60 mg m−2 day−1) and phosphate (1–6 mg m−2 day−1) were important to achieve model calibration, especially during periods of high temperatures and low dissolved oxygen. This sediment flux accounted for 78% (nitrogen) and 50% (phosphorus) of the annual load. Spatial and temporal variability in the lake, reflected in the calibrated and validated models, suggest that ecological factors that influence phytoplankton productivity and nutrient dynamics are different in various parts of the lake. The WASP5 model as implemented here does not fully accommodate the ecological variability in Lake Marion due to model constraints on the specification of rate constants. This level of spatial detail may not be appropriate for an operational reservoir model, but as a research tool the models are both versatile and useful.  相似文献   

4.
The best-fit equations of linear and non-linear forms of the two widely used kinetic models, namely pseudo-first-order and pseudo-second-order equations, were compared in this study. The experimental kinetics of methylene blue adsorption on activated carbon was used for this research. Both the correlation coefficient (R 2) and the normalized standard deviation Δq(%) were employed as error analysis methods to determine the best-fitting equations. The results show that the non-linear forms of pseudo-first-order and pseudo-second-order models were more suitable than the linear forms for fitting the experimental data. The experimental kinetics may have been distorted by linearization of the linear kinetic equations, and thus, the non-linear forms of kinetic equations should be primarily used to obtain the adsorption parameters. In addition, the Δq(%) method for error analysis may be better to determine the best-fitting model in this case.  相似文献   

5.
The objective of this study is to cultivate aerobic granules by pure bacterial strain, Bacillus thuringiensis, in a sequencing batch reactor. Stable granules sized 2.0–2.2 mm were formed in the reactor after a five-week cultivation. These granules exhibited excellent settling attributes, and degraded phenol at rates of 1.49 and 1.19 g phenol/(g VSS?d) at 250 and 1500 mg/L of phenol concentration, respectively. Confocal laser scanning microscopic test results show that Bacillus thuringiensis was distributed over the initial small aggregates, and the outer edge of the granule was away from the core regime in the following stage.  相似文献   

6.
We studied the transformation of phenol in the presence of nitrous acid in the dark. The main detected intermediates were 2-nitrophenol, 4-nitrophenol and 4-nitrosophenol. For the first time a kinetic analysis of the reaction in a pH interval relevant to environmental chemistry has been carried out. The kinetic data are consistent with phenol transformation being initiated by HNO2. The results are relevant to the chemistry of the atmosphere, where HNO2 forms upon heterogeneous conversion of ·NO2, and to water treatment techniques.  相似文献   

7.
《Ecological modelling》2005,187(4):369-388
Ecosystems exhibit nonlinear dynamics that are often difficult to capture in models. Consequently, linearization is commonly applied to remove some of the uncertainties associated with the nonlinear terms. However, since the true model is unknown and the operating point to linearize the model about is uncertain, developing linear ecosystems models is non-trivial. To develop a linear ecosystem model, we assume that the annual mean state of an ecosystem is a minor bias from the long-term mean state. A first order approximation inverse model to govern the year-to-year dynamics of ecosystems whose characteristic time scales are less than 1 year is developed, through theoretically formulation, on the basis of steady state analysis, time scale separation and nondimensionalization. The approach is adept at predicting year-to-year variations and to tracking system response to changes in environmental drivers when compared to data generated with a standard nonlinear NPZD model.  相似文献   

8.
Thermodynamic and kinetic studies on the adsorption of Cs+ and Sr2+ by Na-exchanged clinoptilolite-rich zeolite rock from Akita (Northern Japan) were performed for the purpose of nuclear waste treatment. The thermodynamic parameters such as selectivity coefficient, thermodynamic equilibrium constant, and standard free energy of exchange were evaluated. These values indicated that the selectivity order was determined as Cs+ > Na+ > Sr2+. In order to discuss the adsorption mechanism of Cs+ and Sr2+ onto Na-exchanged clinoptilolite, the effective diffusion coefficients were calculated and two kinetic models, pseudo-first-order and pseudo-second-order kinetic model, were tested. For all systems studied, chemisorption seems significant in the rate-controlling step, and the pseudo-second-order kinetic model provided the best correlation of the experimental data.  相似文献   

9.
《Ecological modelling》2003,167(3):213-220
The effect of cannibalism on an age-structured predator–prey system is studied. Three stable equilibrium states are found. Using a Hopf bifurcation analysis, it is found that the non washout steady state looses its stability as the cannibalism attack rate increases past a bifurcation point Sc. The dependence of the bifurcation point on the other parameters in the model is found. It is shown that the trajectory of the solution spirals in for attack rates S<Sc and exhibits limit cycle behavior for S>Sc.  相似文献   

10.
Background, aim, and scope Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar® bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10?µg?L–1 to 10?mg?L–1), with volatilization rates of up to 10?mg m–3?d–1. For selenium concentrations of 1?mg?L–1 in the nutrient broth, up to 7?% of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.  相似文献   

11.
To assess the effect of tree planting on atmospheric phenol, a study was made on the absorption of phenol by various tree species and the tolerance of these species to phenol. The absorption rates ranged from 21.3 (camellia) to 129 ng dm‐2h‐1 ppb‐1 (Japanese elm) at 1000 μmol of photons m‐2 s‐1, and the absorption rate increased in the following order: coniferous tree species ? evergreen broad‐leaved tree species < deciduous broad‐leaved tree species. When the light intensity was varied, a linear relationship between the phenol absorption rate and the transpiration rate was observed for three tree species. In comparison with the absorption rate estimated from a simplified gas diffusive resistance model, we conclude that phenol is absorbed through the stomata and is metabolized fairly rapidly within the leaf tissue, although the absorption rate is less than the estimated potential absorption rate. At phenol concentrations below 200 ppb, the tree can absorb atmospheric phenol for at least 8 h without any visible foliar injury. Trees in general could act as an important sink for atmospheric phenol at phenol concentrations less than 200 ppb, a concentration about twenty times higher than normal ambient levels.  相似文献   

12.
The asymptotic behavior of a linear compartment model for the environmental movement of radionuclides is investigated. Here, the expression asymptotic behavior is used to designate the behavior of q(t) as t → ∞, where q is the solution of a vector differential equation of the form dq/dt = h + Kq. The asymptotic behavior of such equations is described. For the model and conditions under consideration, each element of q converges monotonically to a steady-state value. A hydrologic system is defined and used to illustrate this behavior. An approach to sensitivity analysis employing Latin hypercube sampling, rank transformations and stepwise regression is presented and then applied to this system. A total of 20 independent variables is introduced and the following dependent variables are investigated for the various components of the system: amount of radionuclide present at steady state. concentration of radionuclide at steady state, and time required to reach 90% of steady state. Finally, an application of asymptotic behavior in the analysis of a hypothetical site for the geologic isolation of high-level radioactive waste is described and a brief discussion of differential sensitivity analysis is given.  相似文献   

13.
14.
A continuous Markovian model of resource flow in a steady state ecosystem model is developed. This model calculates the mean and variance of the frequency of intercompartmental cyclings and duration of compartmental residence times. This model is compared with an analogous discrete Markovian flow model to demonstrate the sensitivity of discrete and continuous ecosystem flow analyses. Appropriate time parameterization of of discrete Markovian flow models is then discussed with special reference to Shannon's theorem of dynamic system sampling.  相似文献   

15.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

16.
The present work describes the removal of Novacron Golden Yellow (NGY) dye from aqueous solutions using peanut hulls. The experiments were performed with native, pretreated and immobilised forms of peanut hulls. The effect of various operational parameters (pH, biosorbent dose, initial dye concentration and temperature etc.) was explored during batch study. NGY showed maximum removal at low pH and low biosorbent dose. High initial dye concentration facilitated the biosorption process. Maximum dye removal with native, pretreated and immobilised biomass was found to be 35.7, 36.4 and 15.02 mg/g respectively. The experimental data were subjected to different kinetic and equilibrium models. The kinetic data confirmed the fitness of pseudo-second-order rate law for NGY biosorption. The equilibrium modelling was carried out by Freundlich, Langmuir and Temkin models. The isothermal data of NGY removal were best described by Freundlich adsorption isotherm. Negative values of Free energy change (Δ G0) for NGY with native and pretreated biomass depicted the spontaneous nature of biosorption process. In column mode, the effects of bed height, flow rate and initial dye concentrations were optimised. Maximum NGY biosorption (7.28 mg/g) was observed with high bed height, low flow rate and high initial concentration in continuous mode. Bohart–Adams model best fitted to the data obtained from column studies. The results indicated that the peanut hulls could be used effectively for the removal of dyes containing wastewater.  相似文献   

17.
The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R 2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.  相似文献   

18.
Specimens of Ciona intestinalis L. were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and the changes in pumping activity and oxygen sonsumption monitored. Heart rate was monitored under steady state conditions using a new in vivo method, and pumping activity was monitored as spontaneous squirting by use of a pressure transducer. Oxygen consumption was also monitored under steady state conditions and under conditions of declining oxygen tension. It was found that during periods of regular beating the mean heart rate for 5 ascidians was 13.2 beats min-1 for the branchial pacemaker and 32.6 beats min-1 for the visceral pacemaker. Regular periods of beating lasted for approximately 1 min, followed by periods of irregular activity prior to heart beat reversal. The heart beat became irregular and reversal occurred sporadically when the ascidians were exposed to dilute seawater. The ascidians showed a pumping rate of 14 squirts per hour in full-strength seawater. This rate declined during decreasing salinity and ceased entirely when the external seawater concentration reached approximately 60% seawater (100%=32% S). During periods of decreased salinity, the siphons were tightly closed and oxygen consumption was zero. The rate of oxygen consumption by C. intestinalis decreased during decreasing salinities and there was no evidence of an oxygen debt. Oxygen consumption under steady state conditions varied with body weight according to the following: oxygen consuption =0.515 W 0.831 (where W is body weight). The rate of oxygen consumption was found to be dependent on the external oxygen tension.  相似文献   

19.
Kinetics of light-intensity adaptation in a marine planktonic diatom   总被引:2,自引:0,他引:2  
The marine planktonic diatom Thalassiosira weisflogii was grown in turbidostat culture under both continuous and 12 hL: 12 hD illumination regimes in order to study the kinetics of adaptation to growth-irradiance levels. In both illumination regimes adaptation to a higher growth-irradiance level was accompanied by an increase in cell division rates and a decrease in chlorophyll a cell-1. The rates of adaptation for both processes, derived from first order kinetic analysis, equaled each other in each experiment. The results suggest that during the transition from low-to-high growth-irradiance levels chlorophyll a is diluted by cell division and is not actively degraded. Introduction of a light/dark cycle lowered the rate of adaptation. In transitions from high-to-low growth-irradiance levels there was a sharp drop in growth rates and a slow increase in chlorophyll a cell-1 under both continuous and intermittent illumination. In the 12 hL:12hD cycle there was a circadian rhythm in chlorophyll a cell-1, where cellular chlorophyll contents increased during the light cycle and decreased during the dark cycle. This circadian rhythm was distinctly different from light intensity adaptation. For kinetic analysis of light intensity adaptation in a 12 hL: 12 hD cycle, the circadian periodicity was separated from the light intensity response by subjecting the data to a Kaiser window optimization digital filter. Kinetic parameters for light-intensity adaptation were resolved from the filtered data. The kinetics of lightintensity adaptation of marine phytoplankton are discussed in relation to their spatial variations and time scales of mixing.This research was performed at Brookhaven National Laboratory under the auspices of the United States Department of Energy under Contract No. DE-AC02-76 CH00016  相似文献   

20.
The results of a study of photocatalytic degradation of phenol using aqueous oxygenated TiO2 (anatase) suspensions in a batch Pyrex photoreactor are reported. The influence on the photodegradation rate of various parameters as pH, phenol and TiO2 content, oxygen partial pressure, anions present in the dispersions was investigated. A complete oxidation of phenol was observed. Intermediate compounds, catechol and quinone, were detected. It was observed that the photodegradation also proceeded with sunlight radiation. A mechanistic and kinetic model, which accounts for the results obtained, is given. Likely reasons for inactivity of the rutile modification for this reaction are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号