首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The size distribution of ambient air particles and associated organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) including hexachlorocyclohexanes (HCHs), DDT and metabolites, etc., was investigated at a traffic-impacted site of Thessaloniki, Greece. Investigation took place during wintertime of 2006 at two heights above ground: at the street level (1.5 m) and at the rooftop level (15 m). Size-resolved samples (<0.95 μm, 0.95–1.5 μm, 1.5–3 μm, 3–7.5 μm and >7.5 μm) were concurrently collected from the two height levels using five-stage high volume cascade impactors. At both heights, particle mass exhibited bimodal distribution with peaks in the 0.95–1.5 μm and the 3–7.5 μm size fractions, whereas most organic pollutants exhibited one peak at 0.95–1.5 μm. Apart from the 0.95–1.5 μm fraction, particle concentrations of all size ranges were significantly higher at the street level than at the rooftop as a result of more intensive vehicular emissions and road dust resuspension. On the contrary, the concentrations of most organic pollutants did not differentiate significantly between the two elevations.  相似文献   

2.
The transport in macroporous clayey till of bromide and 25 organic compounds typical of creosote was studied using a large intact soil column. The organic compounds represented the following groups: polycyclic aromatic hydrocarbons (PAHs), phenolic compounds, monoaromatic hydrocarbons (BTEXs), and heterocyclic compounds containing oxygen, nitrogen or sulphur in the aromatic ring structure (NSO-compounds). The clayey till column (0.5 m in height and 0.5 m in diameter) was obtained from a depth of 1–1.5 m at an experimental site located on the island of Funen, Denmark. Sodium azide was added to the influent water of the column to prevent biodegradation of the studied organic compounds. For the first 24 days of the experiment, the flow rate was 219 ml day−1 corresponding to an infiltration rate of 0.0011 m day−1. At this flow rate, the effluent concentrations of bromide and the organic compounds increased very slowly. The transport of bromide and the organic compounds were successfully increased by increasing the flow rate to 1353 ml day−1 corresponding to 0.0069 m day−1. The experiment showed that the transport of low-molecular-weight organic compounds was not retarded relative to bromide. The high-molecular-weight organic compounds were retarded significantly. The influence of sorption on the transport of the organic compounds through the column was evaluated based on the observed breakthrough curves. The observed order in the column experiment was, with increasing retardation, the following: benzene=pyrrole=toluene=o-xylene=p-xylene=ethylbenzene=phenol=benzothiophene=benzofuran<naphthalene<1-methylpyrrole<1-methylnaphthalene=indole=o-cresol=quinoline<3,5-dimethylphenol=2,4-dimethylphenol<acridine<carbazole<2-methylquinoline<fluorene<dibenzofuran<phenanthrene=dibenzothiophene. This order could not be predicted from regularly characteristics as octanol/water-distribution coefficients of the organic compounds but only from experimentally determined data. The results indicate that a thin clayey till cover of the type described in this paper does not protect groundwater against contamination by low-molecular-weight organic compounds.  相似文献   

3.
The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM10) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2, and7.2–10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95–1.5-μm size range within the fine mode and at 7.3–10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49–0.95 and 7.3–10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1–12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM10 during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM10 was found in particles ≤0.95 μm in diameter which could induce adverse health effects to the population living in these areas.  相似文献   

4.
There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for short-term responses of the respiratory system as observed in several epidemiological studies. However, the available data on ambient particle concentrations in various size ranges are not sufficient to answer this question.Therefore, on 180 days during the winter 1991/92 daily mean size distributions of ambient particles were determined in. Erfurt, a city in Eastern Germany. In the range 0.01–0.3 μm particles were classified by an electrical mobility analyzer and in the range 0.1–2.5 μm by an optical particle counter. From the derived size distributions, number and mass concentrations were calculated.The mean number concentration over this period of time was governed by particles smaller than 0.1 μm (72%), whereas the mean mass concentration was governed by particles in the size range 0.1–0.5 pm (83%). The contribution of particles larger than 0.5 μm to the overall number concentration was negligible and so was the contribution of particles smaller than 0.1 μm to the overall mass concentration. Furthermore, total number and mass concentrations in the range 0.01–2.5 μm were poorly correlated.The results suggest that particles larger than 2.5 μm (or even larger than 0.5 μm) are rare in the European urban environment so that the inhalation of these particles is probably not relevant for human health. Since particle number and mass concentrations can be considered poorly correlated variables, more insight into health-related aspects of particulate air pollution will be obtained by correlating respiratory responses with mass and number concentrations of ambient particles below 0.5 μm.  相似文献   

5.
Aerosol concentrations of carbonaceous material, sulfate, and nitrate for samples obtained using a newly designed PC-BOSS are reported. The results indicated that PM2.5 composition in Atlanta was dominated by sulfate and organic material, with low concentrations of particulate nitrate. Observed average particulate component concentrations for the 26-day study period were: sulfate, 12.2 μg/m3 (17.0 μg/m3 as ammonium sulfate); non-volatile organic material, 11.4 μg OM/m3 (assumes organic material, OM, is 61% C); semi-volatile organic compounds (SVOC) lost from particles during sampling, 5.3 μg OM/m3; filter retained nitrate, 0.1 μg/m3 (0.2 μg/m3 as ammonium nitrate); nitrate lost from particles, 0.3 μg/m3 (0.4 μg/m3 as ammonium nitrate); and soot (elemental carbon), 1.5 μg/m3. The PC-BOSS particle concentrator efficiency was obtained by comparison of the PC-BOSS sulfate data with sulfate data obtained from the Federal Reference Method (FRM) sampler. A modification of the PC-BOSS design to allow independent determination of this parameter is recommended.  相似文献   

6.
Soil and atmospheric concentrations, dry deposition and soil-air gas exchange of organochlorine pesticides (OCPs) were investigated at an industrial site in Aliaga, Izmir, Turkey. Current-use pesticides, endosulfan and chlorpyrifos, had the highest atmospheric levels in summer and winter. Summertime total (gas + particle) OCP concentrations in air were higher, probably due to increased volatilization at higher temperatures and seasonal local/regional applications of current-use pesticides. Particle deposition fluxes were generally higher in summer than in winter. Overall average dry particle deposition velocity for all the OCPs was 4.9 ± 4.1 cm s−1 (average ± SD). ΣDDXs (sum of p,p′-DDT, p,p′-DDD, and p,p′-DDE) were the most abundant OCPs in Aliaga soils (= 48), probably due to their heavy historical use and persistence. Calculated fugacity ratios and average net gas fluxes across the soil-air interface indicated volatilization for α-CHL, γ-CHL, heptachlorepoxide, cis-nonachlor, trans-nonachlor, and p,p′-DDT in summer, and for α-CHL, γ-CHL, trans-nonachlor, endosulfan sulfate, and p,p′-DDT in winter. For the remaining OCPs, soil acted as a sink during both seasons. Comparison of the determined fluxes showed that dry particle, gas-phase, and wet deposition are significant OCP input mechanisms to the soil in the study area.  相似文献   

7.
Simultaneous size distributions and Fourier transform infrared (FTIR) extinction spectra have been measured for several representative components of mineral dust aerosol (quartz, calcite, and dolomite) in the fine particle size mode (D=0.1–1 μm). Optical constants drawn from the published literature have been used in combination with the experimentally determined size distributions to simulate the extinction spectra. In general, Mie theory does not accurately reproduce the peak position or band shape for the prominent IR resonance features in the 800–1600 cm−1 spectral range. The resonance peaks in the Mie simulation are consistently blue shifted relative to the experimental spectra by 20–50 cm−1. Spectral simulations, derived from a simple Rayleigh-based analytic theory for a “continuous distribution of ellipsoids” particle shape model, better reproduce the experimental spectra, despite the fact that the Rayleigh approximation is not strictly satisfied in these experiments. These results differ from our previous studies of particle shape effects in silicate clay mineral dust aerosols where a disk-shaped model for the particles was found to be more appropriate.  相似文献   

8.
Fine and coarse atmospheric particles were collected in Ashdod—a midsize industrial city on the southeastern Mediterranean coast, and in Gedera—a rural site, to characterize ambient particles and to determine their long-range transport during two major seasons—winter and summer. Manual PM2.5 and PM10 samplers, dichotomous samplers, continuous automated PM10 samplers, and denuders were used to sample particulate and gaseous pollutants.Fine and coarse concentrations in Ashdod were 21.2 and 39.6 μg m−3, and 23.9 and 30.5 μg m−3 in the fall–winter and summer campaigns, respectively. Crustal material, as calcites or dolomites mixed with silicates, dominated the coarse fraction and also the fine fraction on dusty days. In the fall–winter, S, P, and Ni were coupled with minerals. Coarse Ni was associated with crustal material during dust storms, while P originated from shipping and deposition of phosphates in the urban area around.Sulfates dominated the fine fractions in the summer season averaging 12 μg m−3. Multivariate analysis indicated that S was associated with As and Se, V and Ni, both associated with heavy fuel combustion, and Zn and Pb. In winter, those mixed sources were local, but in summer they were part of long-range transport. In the fall–winter, Zn and Pb were strongly associated with Mn, Ga, and Cu—elements emitted from either traffic or metal processing plants.Although the influence of crustal material on both size fractions was significant, most heavy metals were associated with PM2.5. Higher concentrations were linked to a larger number of particles in this fraction, to a larger surface area available for biochemical reaction [Harrison, R., Shi, J., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., Philos, T., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society 358, 2567–2579], and finally to a larger concern in regards to health effects.  相似文献   

9.
Vehicle emissions can constitute a major share of ambient concentrations of many volatile organic compounds (VOCs) and other air pollutants in urban areas. Especially high concentrations may occur at curbsides, vehicle cabins, and other microenvironments. Such levels are not reflected by monitoring at fixed sites. This study reports on measurements of VOCs made from buses and cars in Detroit, MI. A total of 74 adsorbent tube samples were collected on 40 trips and analyzed by GC-MS for 77 target compounds. Three bus routes, selected to include residential, commercial and heavily industrialized areas, were sampled simultaneously on four sequential weeks during morning and afternoon rush hour periods. Nineteen compounds were regularly detected and quantified, the most prevalent of which included hexane/2-methyl pentane (15.6±5.8 μg m−3), toluene (10.2±7.9 μg m−3), m,p-xylene (6.8±4.7 μg m−3), benzene (4.5±3.0 μg m−3), 1,2,4-trimethylbenzene (4.0±2.6 μg m−3), o-xylene (2.2±1.6 μg m−3), and ethylbenzene (2.1±1.5 μg m−3). VOC levels in bus interiors and outdoor levels along the roadway were similar. Despite the presence of large industrial sources, route-to-route variation was small, but temporal variation was large and statistically significant. VOC compositions and trends indicate the dominance of vehicle sources over the many industrial sources in Detroit with the possible exceptions of styrene and several chlorinated VOCs. In-bus levels exceeded concentrations at fixed site monitors by a factor of 2–4. VOC concentrations in Detroit traffic are generally comparable to levels measured elsewhere in the US and Canada, but considerably lower than measured in Asia and Europe.  相似文献   

10.
In situ sequential treatment of a mixed contaminant plume   总被引:1,自引:0,他引:1  
Groundwater plumes often contain a mixture of contaminants that cannot easily be remediated in situ using a single technology. The purpose of this research was to evaluate an in situ treatment sequence for the control of a mixed organic plume (chlorinated ethenes and petroleum hydrocarbons) within a Funnel-and-Gate. A shallow plume located in the unconfined aquifer at Alameda Point, CA, was found to contain up to 218,000 μg/l of cis-1,2 dichloroethene (cDCE), 16,000 μg/l of vinyl chloride (VC) and <1000 μg/l of 1,1 dichloroethene (1,1 DCE), trans-1,2 dichloroethene (trans-1,2 DCE) and trichloroethene (TCE). Total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were <10,000 μg/l. Contaminated groundwater was funneled into a gate, 3.0 m wide, 4.5 m long and 6.0 m deep (keyed into the underlying aquitard) where treatment occurred. The initial gate segment consisted of granular iron, for the reductive dechlorination of the higher chlorinated ethenes. The second segment, the biosparge zone, promoted aerobic biodegradation of petroleum hydrocarbons and any remaining lesser-chlorinated compounds, stimulated by dissolved oxygen (DO) and carbon dioxide (CO2) additions via an in situ sparge system (CO2 was used to neutralize the high pH produced from reactions in the iron wall). Groundwater was drawn through the gate by pumping two wells located at the sealed, downgradient, end. Over a 4-month period an estimated 1350 g of cDCE flowed into the treatment gate and the iron wall removed 1230 g, or 91% of the mass. The influent mass of VC was 572 g and the iron wall removed 535 g, corresponding to 94% mass removal. The other chlorinated ethenes had significantly lower influent masses (3 to 108 g) and the iron wall removed the majority of the mass resulting in >96% mass removal for any of the compounds. In spite of these high removal percentages, laboratory column tests indicated that at these levels of chlorinated contaminants, surface saturation of the iron grains likely contributed to lower than expected reaction rates. In the biosparge zone, mass removal of cDCE appeared to occur predominantly by biodegradation (65%) with volatilization (35%) being an important secondary process. The dominant removal process for VC was volatilization (70%) although significant biodegradation was also indicated (30%). Laboratory microcosm results confirmed the potential for aerobic biodegradation of cDCE and VC. When average influent field concentrations for cDCE and VC were 220,000 and 46,000 μg/l, respectively, the sequential treatment unit removed 99.6% of the total mass and when the influent concentrations decreased to 26,000 and 19,000 μg/l for cDCE and VC, respectively, >99.9% removal within the treatment gate was attained. BTEX compounds were found to be significantly retarded in the iron treatment zone. Although they did eventually break through the granular iron, and into the gravel transition zone, none of these compounds was detected in the biosparge zone. No noticeable interferences between the anaerobic (reductive) and aerobic parts of the system occurred during testing. The results of this experiment show that in situ treatment sequences are viable, although further work is needed to optimize performance.  相似文献   

11.
The results of a 12-month study of more than 100 solvent extractable organic compounds (SEOC) in particulate matter (PM) less than or equal to 2.5 microm (PM2.5) collected at three air monitoring stations located at roadside, urban, and rural sites in Hong Kong are reported. The total yield of SEOC that accounts for approximately 8-18% of organic carbon (OC) determined by a thermal optical transmittance method was 125-2060 ng/m3, which included 14.6-128 ng/m3 resolved aliphatic hydrocarbons, 39.4-1380 ng/m3 unresolved complex mixtures, 0.6-17.2 ng/m3 polycyclic aromatic hydrocarbons, 41.6-520 ng/m3 fatty acids, and < 0.1-12.1 ng/m3 alkanols. Distinct seasonal variations (summer/winter differences) were observed with higher concentrations of the total and each class of SEOC in the winter and lower concentrations in the summer. Spatial variations are also obvious, with the roadside samples having the highest concentrations of SEOC and the rural samples having the lowest concentrations in all seasons. Characteristic ratios of petroleum hydrocarbons, such as carbon preference index, unresolved to resolved components, and carbon number with maximum concentration, suggest that PM2.5 carbon in Hong Kong originates from both biogenic and anthropogenic sources. The proportion of SEOC in PM2.5 from anthropogenic sources is estimated.  相似文献   

12.
Removal of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen and naproxen) using extended sludge age biological process was investigated. The sludge age of the biological system was greater than 200 d. Hydraulic retention time of 12 h was maintained throughout the experiment. The extended sludge age biological process is able to treat pharmaceuticals with good and steady removal efficiencies: 64–93% removal for antibiotics over 1–5 μg L−1 influent concentrations and 94% to complete removal for acetaminophen and ibuprofen with a wide range of influent concentrations 1–100 μg L−1. For ketoprofen and naproxen the removal efficiencies are 79–96% over a range of 1–15 μg L−1 influent concentrations. The removal efficiency decreases with increasing initial concentrations for all target compounds except for ibuprofen. This indicates that the initial influent concentration is an important parameter for the studies of fate of pharmaceuticals. The amount of bio-mass and size of the reactor required to achieve good and steady removal efficiencies for known influent pharmaceutical concentrations are also suggested in this study.  相似文献   

13.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   

14.
Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned “on” or “off” at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1–0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h−1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h−1 particle number concentration in the 0.1–0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5–0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h−1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth occurred. These results illustrate still another way in which ventilation affects human exposures in indoor settings. However, the ultimate effects of these exposures on health and well being remain to be determined.  相似文献   

15.
The transport and biodegradation of 12 organic compounds (toluene, phenol, o-cresol, 2,6-, 3,5-dimethylphenol, naphthalene, 1-methylnaphthalene, benzothiophene, dibenzofuran, indole, acridine, and quinoline) were studied at a field site located on the island of Funen, Denmark, where a clayey till 10–15 m deep overlies a sandy aquifer. The upper 4.8 m of till is highly fractured and the upper 2.5 m contains numerous root and worm holes. A 1.5–2 m thick sand lens is encountered within the till at a depth of 4.8 m. Sampling points were installed at depths of 2.5 m, 4 m, and in the sand lens (5.5 m) to monitor the downward migration of a chloride tracer and the organic compounds. Water containing organic compounds and chloride was infiltrated into a 4 m×4.8 m basin at a rate of 8.8 m3 day−1 for 7 days. The mass of naphthalene relative to chloride was 0.39–0.98 for the sampling points located at a depth of 2.5 m, 0.11–0.61 for the sampling points located at a depth of 4 m, and 0–0.02 for the sampling points located in the sand lens. A similar pattern was observed for eight organic compounds for which reliable results were obtained (toluene, phenol, o-cresol, 2,6-, 3,5-dimethylphenol, 1-methylnaphthalene, benzothiophene, and quinoline). This shows that the organic compounds were attenuated during the downward migration through the till despite the high infiltration rate. The attenuation process may be attributed to biodegradation.  相似文献   

16.
Organic pollutants, especially polychlorinated hydrocarbons, phenols, guaiacols and catechols have been studied by analyses of snow samples from North Pole, May 1984. All of these pollutants were below the limit of determination which was estimated to be as fallout 0.1–0.05 μg/m2 for individual compounds. For comparison, snow samples from Central Finland and South Finland 1983–1985 also showed non-detectable levels of chlorinated hydrocarbons but well measurable levels of chlorophenol compounds which were significantly higher at urban (heavy traffic) than rural and higher at South than Central Finnish places, respectively. One sample from Lapland, North Finland 1985, however, had no measurable amounts of chlorophenols like the North Pole sample.  相似文献   

17.
Aerosol matter in the size range <2 μm was collected in a Berner impactor and subsequently analysed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. Owing to the low electron beam energy of 5 keV (occasionally 10 keV), analysis was restricted to elements with atomic numbers 20 (Ca). Sub-micrometer aerosol matter was found to contain mostly S, O, and C as well as some K and Ca. Nitrogen appeared to escape detection, probably due to bombardment-induced sublimation of NO3 and NH4. During sampling at low to moderate relative humidity (<60%) the sulphur-rich fraction of the aerosol matter (most likely sulphates) regrew in the form of microcrystals with sizes up to 10 times larger than the mean aerodynamic diameter of the respective impactor stage. By contrast, when sampling during periods in course of which the relative humidity exceeded 70%, the aerosol matter regrew in the form of extended amorphous agglomerates. The aerosol deposits also contained large numbers of carbon nanoparticles, well separated from the regrown sulphate-rich matter. The nanoparticles were similar in size (20–40 nm), much smaller than the equivalent aerodynamic diameter of the impacting particles (63 nm–2 μm). Presumably, the carbon nanoparticles constituted the core of larger air-borne particles covered with sulphates (as well as with nitrates and organic carbon). The regrown microcrystals disappeared rapidly under electron bombardment at high current density, an observation that indicates high volatility at elevated temperatures. Aerosol matter collected in the size range between 1 and 2 μm contained large fractions of particles made of O, Si, P, K, and Ca (oxides). These particles were highly resistant to electron bombardment (hard) and showed little or no evidence for agglomeration or regrowth. After removing the soluble (acidic) material from the collected aerosol matter, only carbon nanoparticles and hard coarse particles were left behind. The observation of agglomerated or crystallized “soft” aerosol matter in combination with phase separation of carbon nanoparticles lends further support to the assertion that it is not possible to collect useful quantities of fine and ultrafine aerosol particles with as-suspended morphology. Some implications for health-related research are discussed.  相似文献   

18.
Six years (1998–2003) of measurements of ambient air concentrations of total suspended particulate (TSP) measured at a rural background monitoring station in Tenerife (Canary Islands), the El Río station (ER, 28°08′35″N, 16°39′20″W, 500 m a.s.l.) were studied. African dust outbreaks were objectively identified using a new quantitative tool, called the African Index. This index indicates the percentage of time that an air mass remained over an African region at one of three possible height intervals of the lower troposphere. After identifying these episodes, a study of the background TSP levels at the ER station and of direct and indirect (those which cause vertical deposition of dust) African air mass intrusion impacts was performed. Taking into account both direct and indirect episodes, a total of 322 days of African dust intrusion were objectively identified (a mean of 54 episodes per year) in the period 1998–2003, some of them caused by “transition episodes” or “return African air masses”. A subjective method confirmed that 256 of these days were caused by direct impacts of African dust on the ER station. A mean TSP value of 21.6 μg m−3 was found at the station during this period. All the episodes occurred when the TSP concentration was >28.5 μg m−3. The TSP background (14 μg m−3) can be assumed to be representative of the MBL of the Eastern North Atlantic subtropical region. The highest number of dust gravitational settlement (or indirect) episodes occurs in summer, but the highest contribution of these episodes to the TSP levels is in March with a monthly mean TSP contribution of up to 30.5 μg m−3.  相似文献   

19.
To determine the mobility of colloids (0.001–0.45 μm) and suspended particles (> 0.45 μm) in granite fractures, laboratory particle-migration and conservative tracer studies have been carried out in a natural fracture within a large granite block, with overall dimensions of 83×90×60 cm. Flow fields within this horizontal fracture were controlled through a set of 9 boreholes drilled orthogonally to the fracture. Laboratory experiments were performed using a range of average water velocities which contained values low enough to closely approximate the natural flow velocities of < 2 m yr−1 in plutonic rocks of the Canadian Shield. The particles used had diameters between 0.02 and 22 μm, and included latex spheres, glass spheres and colloidal silica. Migration experiments were carried out with a filtered groundwater, ionic strength of 0.01 mol kg−1, obtained from a granite fracture within the Whiteshell Research Area of Manitoba. Flushing experiments showed that suspended particles as large as 40 μm could be mobilized from the fracture surface. The mobility of suspended particles was significantly less than that of colloids. However, within the size range of colloids used in these studies (0.022–0.090 μm), colloid size did not affect colloid migration. Although, in general, colloids eluted ahead of the conservative tracer, colloid mobility was significantly reduced when the average groundwater velocity dropped below between 32 and 240 m yr−1. Colloid transport was found to be very sensitive to flow path and flow direction.  相似文献   

20.
Predicting particle deposition on HVAC heat exchangers   总被引:2,自引:0,他引:2  
Particles in indoor environments may deposit on the surfaces of heat exchangers that are used in heating, ventilation and air conditioning (HVAC) systems. Such deposits can lead to performance degradation and indoor air quality problems. We present a model of fin-and-tube heat-exchanger fouling that deterministically simulates particle impaction, gravitational settling, and Brownian diffusion and uses a Monte Carlo simulation to account for impaction due to air turbulence. The model predicts that <2% of submicron particles will deposit on heat exchangers with air flows and fin spacings that are typical of HVAC systems. For supermicron particles, deposition increases with particle size. The dominant deposition mechanism for 1–10 μm particles is impaction on fin edges. Gravitational settling, impaction, and air turbulence contribute to deposition for particles larger than 10 μm. Gravitational settling is the dominant deposition mechanism for lower air velocities, and impaction on refrigerant tubes is dominant for higher velocities. We measured deposition fractions for 1–16 μm particles at three characteristic air velocities. On average, the measured results show more deposition than the model predicts for an air speed of 1.5 m s−1. The amount that the model underpredicts the measured data increases at higher velocities and especially for larger particles, although the model shows good qualitative agreement with the measured deposition fractions. Discontinuities in the heat-exchanger fins are hypothesized to be responsible for the increase in measured deposition. The model and experiments reported here are for isothermal conditions and do not address the potentially important effects of heat transfer and water phase change on deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号