首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
夜间自然通风已经成功运用于许多被动制冷或低能耗写字楼中。介绍了夜间自然通风在写字楼中的适用性。在适当的温度条件下,建立热量计通风模型,以此来检验节能以及内部舒适度改善情况。研究发现,自然通风模式能够减少传统空调写字间的制冷能耗。采用"应用最佳"的原则,如提高气密性、内部发热及日晒生热的最小化等改善建筑结构能有效提高自然通风的节能性。  相似文献   

2.
ABSTRACT

An eQUEST model was developed to conduct a simulation study of a natural gas engine-driven heat pump (GEHP) for an office building in Woodstock, Ontario, Canada. Prior to the installation of the GEHP, the heating and cooling demands of the office building were provided by rooftop units (RTUs), comprising of natural gas heater and electric air conditioner. Energy consumption for both GEHP and RTUs were monitored for operation in alternating months. These recorded energy consumptions along with weather data were used in the regression analysis. The developed eQUEST models were validated and calibrated with the regression analysis results with respect to the ASHRAE Guideline 14–2014. The eventual models were then applied to investigate the potential annual energy consumption, greenhouse gas (GHG) emission and energy cost savings achieved by using the GEHP in Woodstock, and other cities in Canada, particularly in Ontario.  相似文献   

3.
The paper considers the participation of households in recycling programmes in areas of multi-storey, low income housing which are often considered unattractivefor such programmes.A model of the material recycled is presented together with a review of socio-economic, housing, technological, policy and other factors influencing household recycling. This is followed by a case study of two areas in the city of Edinburgh. Results suggest that the level of recycling is influenced by collection methods, for all materials except glass, with half of the recyclers starting as a result of the introduction of kerbside collection. Housing characteristics such as the storey-level in buildings without lifts , household size and access to cars all influenced recycling participation rates. Housing tenure was not found to be significant. This suggests that well designed kerbside collection programmescan have a significant impact in areas with high levels of multi-storey dwellings, low income and public housing.  相似文献   

4.
A combined photovoltaic–thermal (PV/t) panel is proposed to produce simultaneously electricity and heat from one integrated unit. The unit utilizes effectively the solar energy through achieving higher PV electrical efficiency and using the thermal energy for heating applications. To predict the performance of the PV/t at a given environmental conditions, a transient mathematical model was developed. The model was integrated in a heating application for a typical office space in the city of Beirut to provide the office needs for electricity, heating during winter season, and dehumidification and evaporative cooling during the summer season. To minimize the yearly office energy (electrical and heat) needs, the PV/t panel cooling air flow rate and the dehumidification regeneration temperature were determined for opimal unit operation. Thermal energy savings of up to 85% in winter and 71% in summer were achived compared to conventional systems at a payback period of 8 years for the panels.  相似文献   

5.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   

6.
7.
This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given prediction horizon.  相似文献   

8.
为满足在城市层面开展蓝天保卫战行动、协同控制局地大气污染物和温室气体效果评估的管理需求,本文构建了评估方法体系,明确了评估流程,并梳理了评估参数获取途径。本文所推荐的协同减排量核算方法和协同控制效果评估方法包括:采用排放因子法计算各措施的单项大气污染物和单项温室气体减排量,计算各措施的局地大气污染物当量(LAPeq)和二氧化碳当量(CO_2-eq)减排效果,进而采用协同控制效应坐标系分析和协同控制交叉弹性分析开展协同控制效果评估。本文以唐山市2018年蓝天保卫战行动为案例,选择12项子措施开展试点评估,结果显示:这12项子措施在减排LAPeq 13 840.89 t/a的同时,可协同减排温室气体1 009.43万t CO_2-eq/a;所评估的措施均位于协同控制效应坐标系第一象限;协同控制交叉弹性Els CO2-eq/LAPeq为6.66,即每减排1个百分点的LAPeq,可协同减排6.66个百分点的温室气体。研究表明,本文所提出的评估方法体系具有较好的适用性,可推广应用于城市蓝天保卫战行动协同控制局地大气污染物和温室气体评估工作中。  相似文献   

9.
The performance of the building envelope predominantly determines the ultimate energy performance throughout the lifecycle of a building. A sustainable alternative to enhance roof performance while limiting heat flux through a roof is integrating passive techniques such as green roof. Particularly, green roof performance is sensitive to local climate. The main objective of this study was to evaluate the evapotranspiration effect of an extensive green roof on annual energy consumption of an office building in relation to the humid continental climate of Republic of Korea. The dynamic behavior of green roof and building energy performance were investigated through a parametric simulation method using green roof module in EnergyPlus coupled with jEPlus. Structural data of the reference building and ASHARE 90.1-2007 operational schedules were used as inputs for baseline building model while inputs for the green roof module were based on experimental data sets. Due to the influence of the humid conditions and local wind current on the evapotranspiration process, it was generally found that high leaf area index (LAI) reduced cooling energy demand and somewhat reduced heating energy demand as well; corresponding to the highest daily evapotranspiration fluxes of 4.79 mm day?1 in summer and 1.80 mm day?1 in winter. Increasing LAI from 20% to 100% cover increased evapotranspiration flux by 10.4% in summer and 80.2% in winter. Thus to minimize energy losses in winter, foliage cover must be carefully considered. Within limitations specified, the overall annual building energy consumption deceased by 90.9 GJ (3.7%).  相似文献   

10.
Heat rejection pressure plays an important role in designing a transcritical CO2 refrigeration system, and it has an optimal value to maximize the system’s coefficient of performance (COP). With a thermodynamic simulation model, the optimal heat rejection pressure is studied in the paper for an expander cycle, as well as conventional throttle valve cycle. The effects of compressor efficiency, expander efficiency, gas cooler outlet temperature, and evaporation temperature on the optimal heat rejection pressure are analyzed. It is the first time for a transcritical CO2 expander cycle that the optimal heat rejection pressure is correlated with the gas cooler outlet temperature and the evaporation temperature at given compressor efficiency and expander efficiency. The average deviation from the correlation to simulation results is less than 1.0%. The correlation provides a guideline to system development and performance optimization of a transcritical CO2 expander cycle.  相似文献   

11.
In order to decrease the heat rejection pressure of heat pump using pure working fluid, CO2 or R744, other natural component including hydrocarbons (R290, R600a, R600, R1270, R170, R601) and dimethyl ether (RE170) is added to CO2, respectively, and then six binary mixtures are achieved. By environmental and thermodynamic comparisons, R290 is selected to be the most appropriate component candidate to mix with CO2, and meanwhile to weaken the flammability and explosivity for pure R290. Then, the system performances of heat pump using mixture of CO2 and R290 were experimentally studied when R290 is added to CO2 with a small fraction, and compared with that of the pure CO2. The experimental test rig is designed and set up for the transcritical heat pump system. When the refrigerant charge is variable, the heating coefficient performance, optimum heat rejection pressure, compressor power, mass flow rate of refrigerant, and total heat coefficient of gas cooler were researched. The variation ratios of heating coefficient performance and heating capacity with deviation from the optimum refrigerant charge were also investigated. The optimum refrigerant charge of CO2/R290 is obtained and the research results show that the addition of R290 to CO2 can efficiently reduce the heat rejection pressure and improve the system performance. The results in the present work could provide useful guidelines for the design and operation of heat pump system using CO2-based mixture.  相似文献   

12.
Office building retrofit is a sector being highlighted in Australia because of the mature office building market characterised by a large proportion of ageing properties. The increasing number of office building retrofit projects strengthens the need for waste management. Retrofit projects possess unique characteristics in comparison to traditional demolition and new builds such as partial operation of buildings, constrained site spaces and limited access to as-build information. Waste management activities in retrofit projects can be influenced by issues that are different from traditional construction and demolition projects. However, previous research on building retrofit projects has not provided an understanding of the critical issues affecting waste management.This research identifies the critical factors which influence the management of waste in office building retrofit projects through a literature study and a questionnaire survey to industry practitioners. Statistical analysis on a range of potential waste issues reveals the critical factors, as agreed upon by survey respondents in consideration of their different professional responsibilities and work natures. The factors are grouped into five dimensions, comprising industry culture, organisational support and incentive, existing building information, design, and project delivery process. The discussions of the dimensions indicate that the waste management factors of office building retrofit projects are further intensified compared to those for general demolition and construction because retrofit projects involve existing buildings which are partially operating with constrained work space and limited building information. Recommendations for improving waste management in office building retrofit projects are generalised such as waste planning, auditing and assessment in the planning and designing stage, collaboration and coordination of various stakeholders and different specialists, optimised building surveying and BIM technologies for waste analysis, and new design strategies for waste prevention.  相似文献   

13.
This research investigates an enhanced removal rate of tar and trace pollutants (e.g. hydrogen chloride and hydrogen sulfide, H2S) in the gasification of rice straw, using an integrated in situ tar reduction and hot-gas cleaning technique. The gasification temperature was set at 900°C and equilibrium ratio (ER) was 0.30 in the gasifier. In the in situ tar reduction method, the catalyst, dolomite with an amended ratio of 0–15% was introduced to the gasifier. The integrated hot-gas cleaning system applied a multi-packed tower to remove the tar, sulfur and/or chlorine byproduct in syngas at 250°C. The packed materials composed of zeolite, calcined dolomite and activated carbon. The experimental results indicated that the tar concentration of syngas was approximately 20 g/kg. However, in catalytic gasification with 5% dolomite addition, the tar concentration reduced to 17 g/kg. The tar reduction efficiency was approximately 15% by an in situ dolomite addition. When applying the integrated hot-gas cleanup system, the tar was virtually eliminated. The total tar elimination rate was almost 100% and the cleaned syngas could be applied in other energy utilization equipment. On the other hand, the H2S and HCl concentration were 101 ppmv and 991 ppmv, respectively. After the integrated syngas cleaning system, the H2S and HCl were decreased to 7.9 ppmv and 410 ppmv with a removal efficiency of 92.1% and 58.6%, respectively. It can be concluded that combining the in situ method with the integrated syngas cleaning system can effectively reduce the amount of byproduct and enhance the syngas quality in the gasification of rice straw.  相似文献   

14.
An experimental investigation is performed to evaluate the performance of an integrated hotbox in a 1-kW solid oxide fuel cell (SOFC) system fed by natural gas. The integrated hotbox comprises all the main balance of plant components of an SOFC system, i.e. afterburner, reformer, and heat exchanger, and it not only reduces the physical size of the system but also yields improved system efficiency. The experimental results show that under optimal operating conditions, the combined H2 and CO content of the reformate gas is approximately 70%, while both anode and cathode in-gas temperatures are around approximately 750°C.  相似文献   

15.
An evaluation of the economic and environmental costs and benefits that would result if the Zorinsky Federal Building, located in Omaha, Nebraska, USA, converted its current lighting system to a more energy-efficient system (i.e., joined the EPA's Green Lights Program) was conducted. Lighting accounts for 20–25 percent of all electricity sold in the United States. Costs considered in the study included the cost of retrofitting the building's existing lighting system and the cost of disposal of the current lamps and ballast fixtures. Benefits included a reduction of electric utility costs and a reduction of emissions of SO2, NO x , CO2, and CO from electric utility power plants. Environmental and health issues for air pollutant emissions were also addressed. The results showed that significant reductions in utility bills as well as reductions in air emissions would result from a major building converting to a more energy efficient lighting system. The results showed that conversion of this large building would reduce SO2 emissions by 14.6 tons/yr and NO x emissions by 6.3 tons/yr. In addition, the conversion would reduce annual energy costs by approximately $114,000.  相似文献   

16.
Influence of Geoengineered Climate on the Terrestrial Biosphere   总被引:3,自引:0,他引:3  
Various geoengineering schemes have been proposed to counteract anthropogenically induced climate change. In a previous study, it was suggested that a 1.8% reduction in solar radiation incident on the Earths surface could noticeably reduce regional and seasonal climate change from increased atmospheric carbon dioxide (CO2). However, the response of the terrestrial biosphere to reduced solar radiation in a CO2-rich climate was not investigated. In this study, we hypothesized that a reduction in incident solar radiation in a Doubled CO2 atmosphere will diminish the net primary productivity (NPP) of terrestrial ecosystems, potentially accelerating the accumulation of CO2 in the atmosphere. We used a dynamic global ecosystem model, the Integrated Biosphere Simulator (IBIS), to investigate this hypothesis in an unperturbed climatology. While this simplified modeling framework effectively separated the influence of CO2 and sunlight on the terrestrial biosphere, it did not consider the complex feedbacks within the Earths climate system. Our analysis indicated that compared to a Doubled CO2 scenario, reduction in incident solar radiation by 1.8% in a double CO2 world will have negligible impact on the NPP of terrestrial ecosystems. There were, however, spatial variations in the response of NPP-engineered solar radiation. While productivity decreased by less than 2% in the tropical and boreal forests as hypothesized, it increased by a similar percentage in the temperate deciduous forests and grasslands. This increase in productivity was attributed to a 1% reduction in evapotranspiration in the Geoengineered scenario relative to the Doubled CO2 scenario. Our initial hypothesis was rejected because of unanticipated effects of engineered solar radiation on the hydrologic cycle. However, any geoengineering approaches that reduce incident solar radiation need to be thoroughly analyzed in view of the implications on ecosystem productivity and the hydrologic cycle.  相似文献   

17.
Abstract

This article presents a case study of a projected solar assisted biomass district heating system in the north of Sweden. It is generally known that a biomass district heating system combined with solar heat brings many important benefits. The most common system solution is to install a heat store and a large solar collector field near the heating central. No plant of this type is however in operation in the northern part of Sweden. The main reason for this is that the solar irradiation at these latitudes is very low when the demand for heat is high. Solar heat could however be useful during summer in order to generate hot tap water. One problem is that the heat losses, calculated as percentage of the delivered heat, become very large during these months. This article presents the idea of allowing the connected households to generate their own hot tap water using solar collectors and heat stores installed in each house. The district heating network can therefore be closed in summer, which eliminates the heat losses outside the heating period. A case study of a projected plant has been carried out and it is shown that it is possible to reduce the heat losses by 20% compared to a conventional system. This idea also provides many other important technical and economic benefits.  相似文献   

18.
The transcritical CO2 Rankine cycle with liquefied natural gas (LNG) as cold source is a promising power system to utilize mid- and low-temperature heat source. Most previous works focused on thermodynamic and thermoeconomic analysis or optimization for the system. In this article, an off-design performance analysis for the system is conducted. An off-design mathematical model for the system is established to examine the variation of system performance with the variations of heat source mass flow rate and temperature. A modified sliding pressure regulation control strategy, which regulates turbine inlet pressure to keep the temperature difference between heat source temperature and turbine inlet temperature constant, is applied to control the system when off-design conditions happen. The results show that when the mass flow rate or the temperature of heat source is less or lower than that of design condition, both the net power output of system and the system exergy efficiency decrease, whereas when they are more or higher than the values of design condition, the net power output of system increases but the system exergy efficiency still decreases. In addition, both CO2 turbine and NG turbine could almost keep the designed efficiency values under the applied control strategy.  相似文献   

19.
By establishing wind tunnel and employing electrical heating method, the heat transfer characteristics of flat plate were investigated under environmental wind condition. Both the uniform and linear heat flux boundary conditions were adopted for comparison purpose. Besides, the impacts of heat flux qwm, tilt angle α and wind incidence angle θ on heat transfer were explored in cases of windward and leeward facing positions. The local convection heat transfer coefficient hcx and average convection Nusselt number Nucm were obtained. The results show that, when α is small, there are two maximum values of hcx under linear heat flux boundary condition. As for Nucm, differences between the two boundary conditions seem indistinctive. At windward orientation, Nucm is not sensitive to α. While for leeward orientation, Nucm has a rapid decline progress with the increasing α, which indicates the tilt angle α is an important parameter to affect the heat transfer of plate. Finally, new correlations of Nucm have been developed, which were proven effective in engineering applications.  相似文献   

20.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号