首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The suitable design is the most important key to a cost-effective solar air heater. Although there are many techniques that have been proposed to improve the solar air heaters’ performance by means of different turbulence promoters, they cannot ensure a compromise between the cost and the effectiveness. The aim of this study is to find simple and tolerable solution to get rid of the inconvenience resulting from the widely adopted heat-transfer-enhancement techniques by providing an optimized solar air heater design. The proposed design consists of a slightly curved smooth flow channel with an absorber plate of convex shape. A prototype of a curved solar air heater of 1.28 m2 collector area was built and tested under summer outdoor conditions in Biskra (Algeria). The performance was evaluated in terms of thermal and effective efficiency for mass flow rates of 0.0172, 0.029, and 0.0472 kg/sm2. It is observed that the overall efficiency of this solar air heater is considerably higher in comparison with the efficiency range of the conventional smooth flat plate heaters reported in the literature for similar operating conditions.  相似文献   

2.
In this work, the performance of a forced convection solar air heater was evaluated using using three packed bed absorber plate configurations and compared with flat absorber plate. The phase change material (paraffin wax) was packed in the pin-fin, trianglular and circular absorber plate configurations. The performance parameters such as, outlet air temperature, thermo-hydraulic efficiency, exergy efficiency and pressure drop were predicted and compared. The results showed that the packed bed absorber plate configurations using paraffin wax have higher outler air temperature in the range of 2–5°C with 3–40% higher thermo-hydraulic efficiency and 2–20% higher exergy efficiency when compared to flat absorber plate. However, the packed bed absorver plates have higher pressure drop when compared to flat absorber plate.  相似文献   

3.
Artificially roughened solar air heater has been topic in research for the last 30 years. Prediction of heat transfer and fluid flow processes of an artificially roughened solar air heater can be obtained by three approaches: theoretical, experimental, and computational fluid dynamics (CFD). This article provides a comprehensive review of the published literature on the investigations of artificially roughened solar air heater. In the present article, an attempt has been made to present holistic view of various roughness geometries used for creating artificial roughness in solar air heater for heat transfer enhancement. This extensive review reveals that quite a lot of work has been reported on design of artificially roughened solar air heater by experimental approach but only a few studies have been done by theoretical and CFD approaches. Finally this article presents a comparative study of thermo-hydraulic performance of 21 different types of artificial roughness geometries attached on the absorber plate of solar air heater in terms of thermo-hydraulic performance parameter. Heat transfer and friction factor correlations developed by various investigators for different types of artificially roughened solar air heaters have also been reported in this article.  相似文献   

4.
The device performance of double-pass V-corrugated solar air heaters with external recycle was investigated experimentally and theoretically. The comparison between V-corrugated and flat-plate collectors was made to show the thermal efficiency improvement with various operating parameters. The results show that the collector efficiency improvement of the recycling double-pass V-corrugated operation is much higher than those of the other configurations under various recycle ratios and mass flow rates. However, there exists the penalty on the power consumption increment due to implementing V-corrugated channel into the solar air heaters, an economic consideration on both the heat-transfer efficiency enhancement and power consumption increment for the double-pass V-corrugated device was also delineated. The experimental setup was carried out to validate the theoretical predictions, and the fairly good agreement between both results was achieved with the error analysis of 0.48-1.83%.  相似文献   

5.
Single-pass solar air heaters (SAHs) with two and six fins attached and packed with wire mesh layers were experimentally investigated. Wire mesh layers were used between the fins in the place of an absorber plate. The effects of air mass flow rate on the outlet temperature and thermal efficiency were studied. The results showed an increase in the thermal efficiency as the air mass flow rate was increased. The range of the mass flow rate used in this work was between 0.0121and 0.042 kg/s. It was found that for the same mass flow rate the SAH having six fins has higher efficiency compared to the system that has two fins. The maximum efficiencies for the SAHs were obtained at the mass flow rate of 0.042 kg/s. The maximum efficiencies for the six-finned and two-finned SAHs were 79.81% and 71.8%, respectively. In addition, the maximum temperature difference between the inlet and the outlet, ΔT, for the SAH with six fins exceeded the two-finned SAH for the same mass flow rates. The maximum ΔT was 51.1°C for the six-finned SAH and 44.2°C for the two-finned SAH. As expected, the maximum ΔT for each SAH was obtained at the lowest air mass flow rate (i.e., 0.0121 kg/s). A substantial enhancement in the thermal efficiency was achieved in comparison to the results of a single-flow packed bed collector with those of conventional collectors.  相似文献   

6.
Abstract

This article describes a novel flat plate heat-pipe solar collector, namely, the hybrid heat-pipe solar collector. An analytical model has been developed to calculate the collector efficiency as well as simulate the heat transfer processes occurring in the collector. The effects of heat pipes/absorber, top cover, flue gas channel geometry, and flue gas temperature and flow rate, on the collector efficiency were investigated based on three modes of operation, i.e., solar only operation, solar/exhaust gas combined, and solar, exhaust gas and boiler combined. Experimental testing of the collector was also carried out for each of these modes of operation under real climatic conditions. The results were used to estimate the efficiency of the collector and determine the relation between the efficiency and general external parameter. The modeling and experimental results were compared and a correlation factor was used to modify the theoretical predictions. It was found that the efficiency of the collector was increased by about 20–30% compared to a conventional flat-plate heat pipe solar collector.  相似文献   

7.
The study of the heat transfer enhancement for the recycling double-pass V-corrugated solar air heaters, which implement the external recycle of flowing air, was investigated experimentally and theoretically. The comparison among different designs of V-corrugated, baffled and fins attached, and flat-plate collectors was made to show the device performance improvement with various operating parameters under the same working dimensions. The recycling double-pass V-corrugated device developed here was proposed in aiming to strengthen the convective heat-transfer coefficient and enlarge the heat transfer area. The error analysis of experimental results deviate by 0.85–2.46% from the theoretical predictions with the fairly good agreement, and both results show that the device performance of the recycling double-pass V-corrugated operation is better than those of the other configurations under various recycle ratios and mass flow rates. The suitable selections were obtained for operating recycling double-pass V-corrugated devices while considering with an economic viewpoint by both the collector efficiency enhancement and the power consumption increment.  相似文献   

8.
Conventional solar photovoltaic (PV) module converts the light component of solar radiation into electrical power, and heat part is absorbed by module increasing its operating temperature. Combined PV module and heat exchanger generating both electrical and thermal powers is called as hybrid photovoltaic/thermal (PV/T) solar system. The paper presents the design of a PV/T collector, made with thin film PV technology and a spiral flow absorber, and a simulation model, developed through the system of several mathematical equations, to evaluate the performance of PV/T water collectors. The effect of various parameters on the thermal and electrical efficiency has been investigated to obtain optimum combination of parameters. Finally, a numerical simulation has been carried out for the daily and annual yield of the proposed PV/T collector, and comparison with a standard PV module is discussed.  相似文献   

9.
A passive flat-plate solar air collector was constructed in the laboratory of New and Renewable Energy in Arid Zones, Ouargla University, South East Algeria. The absorber of the passive flat-plate solar air collector was laminated with a thin layer of local sand. This acted as a thermal packed bed with a collecting area of 0.5 m2 (1 m × 0.5 m). Three series of experiments were performed. The first consisted of choosing the best sand brought from three different places of the Algerian desert. The second consisted of studying the effect of the thickness of the sand layer on the daily efficacy of the collector. The influence of the sand diameter was investigated in the third series. The experimental results showed that: All collectors covered with sand had higher efficiency than those without. It was noticed that, for a fixed mass of sand (given thickness of the sand layer), the improvement of the collector was inversely proportional to the sand particle diameters. The maximum efficiency approximates 62.1% for a particle diameter 0.063 mm, compared to 41.71% for a diameter 0.250 mm.The efficiency of the collector for a fixed particle diameter increases with the increase in the thickness of the sand layer. The collector with thickness sand layer 0.84 mm gave the best efficiency of 46.14% compared to 27.8% for 0.28 mm of thickness sand layer.  相似文献   

10.
太阳能光伏发电成本及展望   总被引:1,自引:0,他引:1  
针对太阳能电池的昂贵发电成本,分析和预测了国内外的太阳能光伏产业链的现状与发展;指出研制高效率、低成本太阳能光伏发电系统将是今后的任务。  相似文献   

11.
There is an increasing trend to conduct the researches related to Microbial Fuel Cells (MFCs) in the recent years. Limited power output has been the major obstacle for the practical application and upscaling of MFCs. Attempts have been made on electrode modifications such as anode treatments, cathode modifications with catalysts and bio cathodes developments to produce varying degrees of improved output current depending upon the types of modifications. Power density and Coulombic efficiency have been considered as the important parameters to analyze the system performances. This paper overviews on the advances made in MFCs’ researches focusing on different types of electrodes modifications along with the involved methodology. Furthermore, the system performances of different modified MFCs are compared in terms of the power density and the Coulombic efficiency.  相似文献   

12.
ABSTRACT: This paper presents research conducted on tidal power generation utilizig atmospheric pressure or air recirculation. The proposed methods in this paper differ from conventional methods. That is, they require simple and relatively inexpensive power generating facilities that would convert the potential energy of the tides into kine tic energy of air for driving the air turbines in a power plant. The characteristics of the new methods are as follows: (1) in tidal power generation utilizing the atmospheric pressure, the air pressure exerted on an air turbine can be maintained at 1 atm regardless of the water head; (2) in tidal power generation utilizing the air recirculation, the air pressure exerted on an air turbine can be made twice as high as the available water head; (3) higher tidal energy conversion efficiency can be obtained by flowing larger quantities of water in a shorter time period; (4) the generating turbines can be located at a convenient place remote from the reservoir; and (5) equipment corrosion due to salt is minimized.  相似文献   

13.
分子吸附器在光学相机污染控制中的应用研究   总被引:1,自引:0,他引:1  
分子吸附器作为一种新型的在轨污染控制手段,具有使用方便、重量轻、无功耗和成本低等特点,可以为航天器光学相机提供在轨污染控制。从在轨分子污染物和分子吸附器特点两方面进行分析,描述了光学相机在轨污染物来源及特点,分析了污染物成分及对光学相机的危害,阐述了分子吸附器(包括吸附剂和基底)的组成及吸附特点。结合相机结构,提出了分子吸附器在光学相机污染控制中的应用方案,并明确了今后的研究方向。  相似文献   

14.
The ISCC technology representing an integrated solar combined cycle and the economic assessment of ISCC are investigated. Comparisons conducted by theoretical calculation method among two cases, that is, an integrated solar combined cycle system (ISCCS) and a combined cycle gas turbine system (CCGTS) show that ISCCS provides the best solution with the highest efficiency of heat to electricity among them. The results reflected by theoretical calculation also reveal that ISCCS is beneficial to energy saving and emission reduction. Due to the great advantages of ISCC, comprehensive analysis on the basic conditions for building ISCC power plants is analyzed in detail.  相似文献   

15.
The solar chimney power plant (SCPP) is a power generator which uses solar radiation to increase the internal energy of the air circulating in the system, thereby transforming the useful gain of the solar collector into kinetic energy. The produced kinetic energy then can be converted into electrical energy by means of an appropriate turbine. In this paper, four locations in Algeria

(Constantine, Ouargla, Adrar, and Tamanrasset) were considered as case studies to describe the SCPP mechanism in detail. Numerical simulation of an SCPP which has the same geometrical dimensions was performed to estimate the power output of SCPP in these regions. Using the CFD software FLUENT we simulated a two-dimensional axisymmetric model of a SCPP with the standard k-ε turbulence model. The simulation results show that the highest power output produced monthly average value 68–73 KW over the year and the highest hourly power produced in June is around 109–113 KW.  相似文献   


16.
Present work investigates a noble approach toward the heat loss analysis of parabolic dish type solar cooker. Various experiments have been done on cooking pot to get the input parameter for calculation purposes. Cooking pot was kept at the focus of a parabolic dish type concentrator and repeated experiments have been done to measure solar radiation intensity (direct and Indirect) using a pyrometer, temperature at the focus of parabolic dish using a thermocouple and air velocity using hot wire anemometer to investigate the heat losses from the cooking pot. In the present article, a numerical approach has been performed to define the new parameter called performance index of the cooking pot which decides how the useful energy of working fluid inside the cooking pot approaches concentration ratio of the parabolic dish type solar cooker. The present analysis shows that the performance index varies from 15.45 to 17.66 and efficiency varies from 85.83% to 98.10% with the time of the day.  相似文献   

17.
Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This article presented a numerical investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar ORC and a biogas boiler. The biogas boiler with a module of solar parabolic trough collectors (PTCs) is employed to provide heat source to the ORC via two distinct intermediate pressurized circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy–exergy and economic analysis with the organic working fluid R123. The effects of various parameters such as the evaporation and condensation temperatures on system performance were investigated. The net power generation efficiency of the cogeneration system is 11.17%, which is 25.8% higher than that of the base system at an evaporation temperature 110°C. The exergy efficiency of ORC system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting in an approximate annual saving from $1,700 to $3,000. Finally, a case study based on the consideration of typical rural residence was performed, which needs a payback period of 7.8 years under the best case.  相似文献   

18.

Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO2 and NOx will increase. The emission of CO and CH4 will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%–45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO2 emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment.

  相似文献   

19.
Absorption by chemical solvents combined with CO2 long-term storage appears to offer interesting and commercial applicable CO2 capture technology. However one of the main disadvantages is related to the large quantities of heat required to regenerate the amine solvent that means an important power plant efficiency penalty. Different studies have analyzed alternatives to reduce the heat duty on the reboiler and the thermal integration requirements on existing power cycles. In these studies integration principles have been well set up, but there is a lack of information about how to achieve an integrated design and the thermal balances of the modified cycle flowsheet. This paper proposes and provides details about a set of modifications of a supercritical steam cycle to overcome the energy requirements through energetic integration with the aim of reducing the efficiency and power output penalty associated with CO2 capture process. Modifications include a new designed low-pressure heater flowsheet to take advantage of the CO2 compression cooling for postcombustion systems and integration of amine reboiler into a steam cycle. It has been carried out several simulations in order to obtain power plant performance depending on sorbent regeneration requirements.  相似文献   

20.
The aim of this paper is to optimize the thermal performance (system output energy, thermal efficiency, and heat loss of cavity absorber) of parabolic trough solar collector (PTC) systems in order to improve its thermal performance, based on the genetic algorithm-back propagation (GA-BP) neural network model. There are a number of undefined problems, fuzzy or incomplete information and a complex thermal performance of the PTC systems. Therefore, the thermal performance prediction of the PTC systems based on GA-BP neural network model was developed. Subsequently, the metrics performances have been adopted to comprehensively understand the algorithm and evaluate the prediction accuracy. Results revealed that the GA-BP neural network model can be successfully used to predict the complex nonlinear relationship between the input variables and thermal performance of the PTC systems. The cosine effect has a great influence on the thermal performance; thereby the geometrical structure of the PTC systems was optimized. It was found that the optimized geometrical structure was beneficial to improve the thermal performance of the PTC system. In conclusion, the GA-BP neural network model has higher prediction accuracy than the other algorithm and it can be feasible and reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号