首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近年来,我国粤港澳大湾区臭氧污染问题日益突出,夜间臭氧浓度呈增长趋势.目前,大部分研究主要关注于白天臭氧的生成过程,而对夜间臭氧浓度不降反升现象的认识明显不足.本研究利用2014—2019年粤港澳大湾区中心城市广州的污染物观测数据,统计了夜间臭氧出现增加(NOE:nocturnal ozone enhancement,定义为夜间20:00—6:00臭氧相邻时刻增加量大于5×10-9 (Part per billion,下同))的频率、出现时间、峰值浓度,结合ERA5再分析数据和常规气象观测数据分析了NOE事件的潜在成因及垂直和水平输送的相对贡献大小.结果表明,广州暖季(4—11月)夜间出现NOE事件的年平均天数为(59±11) d,主要发生于23:00—3:00.NOE事件造成的夜间峰值浓度可达到(33±10)×10-9,明显高于不出现夜间臭氧增加(NNOE:non-enhanced nocturnal ozone,定义为夜间20:00—6:00臭氧相邻时刻增加量均小于1×10-9)时的浓度((16±12)×10  相似文献   

2.
兰州春夏季PM10碳组分昼夜变化特征与来源分析   总被引:3,自引:2,他引:1  
马丽  余晔  王博  赵素平  李刚 《环境科学》2017,38(4):1289-1297
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响.  相似文献   

3.
<正> 各种交通工具及机器产生的噪声级一般可达到80—145分贝(A),而人体所能忍受的最高噪声级为80分贝(A)。人在休息时噪声允许的标准为:白天60分贝(A),夜间50分贝(A)。如在休息时噪声超过标准,也会影响工作时的效率。例如,人休息时受噪声影响的结果使劳动生产率降低3—5%。所以有必要继续研究噪声发生源的结  相似文献   

4.
以山西农业大学信息学院为例,本文对高校校园环境噪声进行实地监测,以分析高校校园环境噪声污染状况。结果表明,整体来看,校园外部噪声比校园内大,其中校内的噪声高峰在21:00~22:30,Leq均值为61.3d B;而校外噪声高峰在12:00~13:30,Leq均值为84.6d B。学校教学环境(教学区与水上书吧区)噪声超标情况不严重,基本能满足正常的教学要求;但校门口、食堂区与夜间操场区噪声超标情况较为严重,其噪声时间分布特征与学生的生活作息及学生社团活动表现出明显的相关性。  相似文献   

5.
为掌握贵阳市大气PM2.5中重金属的污染特征、潜在来源和健康危害,于2017年10月—2018年2月白天(08:00—19:00)、夜间(20:00—翌日07:00)连续采集秋、冬两季大气颗粒物PM2.5样品(n=202),采用电感耦合等离子体质谱(ICP-MS)法,检测样品中10种重金属(Pb、Cd、Cr、As、Zn、Mn、Co、Ni、Cu和V)含量,分析其昼夜质量浓度特征及变化规律,运用PMF(正定矩阵因子分析)模型和HMHR(健康风险评价模型)分别探讨其来源及健康风险.结果表明:①秋、冬两季大气颗粒物ρ(PM2.5)日均值分别为(53±18)(62±20)μg/m3,均低于GB 3095—2012《环境空气质量标准》二级标准(75 μg/m3);ρ(As)、ρ(Zn)和ρ(Mn)均呈冬季高于秋季的特征,其他元素变化不明显.②白天ρ(PM2.5)为(61±20)μg/m3,稍高于夜间〔(58±24)μg/m3〕;ρ(Pb)白天低于夜间,ρ(Ni)、ρ(Mn)、ρ(Zn)和ρ(Cu)则白天高于夜间,其他元素昼夜质量浓度无明显差异.③PMF模型分析表明,交通污染、燃煤、工业冶金和土壤扬尘是采样期间10种重金属的主要来源,其贡献率分别为39%、37%、14%、10%.④HMHR结果表明,Cd和Mn对儿童存在非致癌风险,其他重金属元素对人群无非致癌风险.致癌元素As、Cr和Cd的致癌风险值介于4.3×10-6~4.4×10-5之间,对人群可能存在致癌风险;而Ni和Co的致癌风险值均低于可接受水平(10-6).研究显示,贵阳市秋、冬两季PM2.5中重金属污染水平整体较低,交通污染和煤炭燃烧是其主要来源,重金属元素中Cd、Mn、As和Cr对人群存在一定的健康风险.   相似文献   

6.
利用颗粒物粒径分布测量仪(particle size distribution system,PSD)对南宁市2016年11月15日—12月4日大气颗粒物进行实时监测,分析颗粒物数浓度、粒径分布特征及其与颗粒物质量浓度的关系.结果表明,南宁市3 nm~20μm颗粒物平均数浓度为3269个·cm-3,粒径呈双峰分布,主峰值出现在28 nm左右,次峰值出现在100 nm左右.颗粒物数浓度随时间变化呈现一定规律,即早上8:00—10:00和晚上18:00—20:00左右出现浓度高值,这与早晚高峰有关.新粒子一般在16:00~18:00左右开始生成,18:00—20:00左右逐渐长大,并在夜间至凌晨保持较高的浓度.南宁市监测期间新粒子生成与机动车尾气排放有关.颗粒物质量浓度越大对应的数浓度也相应较高,较大粒径颗粒物对质量浓度贡献较大.降雨和风速加大过程对颗粒物数浓度下降有影响;温度和湿度对颗粒物数浓度影响不明显.  相似文献   

7.
目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.   相似文献   

8.
城市环境噪声的测量一般都是采用网格布点法,这种大面积多测点的监测方法因需要大量的人力物力故不易经常开展.如何能用少量数目的噪声监测点来反映整个城市噪声水平,是目前需要探讨解决的实际问题。我们应用数理统计中的抽样理论,以1986年秦皇岛市按网格布点法所取得的环境噪声监测数据为样本,对秦皇岛市环境噪声监测点的数目进行了优化。一、分功能区进行抽样  相似文献   

9.
要有效地减少城市碳排放和正确地判断城市现有减排措施的有效性就必须准确地确定城市大气CO2的来源.由于碳同位素比从污染源到受体的传输过程中同位素分馏现象不明显,本研究建立了一套基于碳同位素比技术定量估算城市大气CO2来源的方法,并用该方法初步定量分析了上海市嘉定区大气CO2中来自燃煤、机动车尾气和生物质贡献的时空分布.上海市嘉定区大气CO2的上述3种来源中,生物质的贡献最大.燃煤的贡献在夜间(00:00、04:00和20:00)多于白天(08:00、12:00和16:00),且随高度的升高而增大;机动车尾气的贡献则随高度的升高而降低.大气CO2浓度时空分布特征体现了上海市郊嘉定区大气CO2的排放特征和各来源的传输特性.  相似文献   

10.
移动监测法测量厦门春秋季近地面CO2的时空分布   总被引:1,自引:0,他引:1  
李燕丽  邢振雨  穆超  杜可 《环境科学》2014,35(5):1671-1679
移动监测对研究城市近地面空气污染物时空分布特征具有重要意义.本研究采用野外移动监测车,利用二氧化碳测量仪、粉尘仪及小型气象站,在春秋季共选取14 d,沿厦门不同功能区,在每天不同时间段(09:00~12:00、13:00~16:00、22:00~01:00)进行了CO2与颗粒物(PM)浓度及气象参数的监测,并分析了春秋季不同时段下各功能区近地面CO2空间分布特征以及CO2与颗粒物的相互关系.结果表明:①监测期间,路线从北部的坂头水库背景区经郊区进入市中心最终在城市南部边缘沿海干道结束,CO2浓度的空间分布呈现中间市中心高沿市中心向两边边缘处降低的结构,不同功能区CO2空间分布存在差异,受城市交通,工业,人类活动等排放,地面植物/作物以及气象条件的影响.主要表现为交通繁忙区(仙岳路/厦禾路/嘉禾路,477.33μmol·mol-1±6.11μmol·mol-1)高于商业居民区(杏林/思北,454.95μmol·mol-1±5.45μmol·mol-1)高于自然风景区(文屏/环岛路/演武路,441.01μmol·mol-1±6.24μmol·mol-1)高于耕地(农田,436.79μmol·mol-1±1.87μmol·mol-1)高于山体林地(坂头水库,434.06μmol·mol-1±0.31μmol·mol-1);②监测期间春季平均CO2浓度为452.04μmol·mol-1±20.24μmol·mol-1,最大值出现在2013年4月12日的嘉禾路路段(市内交通繁忙区)为533.10μmol·mol-1,最小值出现在2013年4月10日的坂头水库路段(远离市区,受人为活动影响较小,水库周围有大量植被,可认为监测过程中的背景区域)为413.25μmol·mol-1.秋季平均CO2浓度为451.80μmol·mol-1±21.56μmol·mol-1,其中最大值出现在2012年11月19日的厦禾路路段(市内交通繁忙区)为526.45μmol·mol-1,最小值出现在2012年11月20日的坂头水库路段为415.01μmol·mol-1.这符合Idso等在1998年提出"城市CO2岛"的现象;③不同时间段CO2浓度表现出夜晚时段(22:00~01:00)高于上午时段(09:00~12:00)高于下午时段(13:00~16:00),阴天普遍高于晴天,且不同功能区CO2浓度在夜晚时段(22:00~01:00)和白天时段(09:00~12:00和13:00~16:00)的差异不同,春季的差异范围为-0.66~29.48μmol·mol-1,秋季的差异范围为-4.01~33.69μmol·mol-1;④市区CO2浓度与周围郊区存在差异,市区CO2浓度均高于郊区;⑤移动监测主要受道路车辆排放的影响,CO2浓度与PM2.5呈显著正相关关系(R=0.73,P<0.01).  相似文献   

11.
吕晓虹 《重庆环境科学》2002,24(6):79-80,85
通过对解放碑商业中心区1991-2000年环境噪声监测结果的分析评价,比较了十年均噪声的时间分布污染和1998-2000年的季平均噪声的时间分布污染状况,得出该商业地区噪声污染在昼间15:00-17:00最高,夜间在4:00左右最低;四季中,秋季的昼间噪声最高,冬季的夜间的噪声最低,其昼间噪声的波动幅度也较小,与人群的社会行为活动密切相关。  相似文献   

12.
《环境工程》2007,25(4):83-83
《城市区域环境噪声标准》和《工业企业厂界噪声标准》均规定,以居住为主的1类区域,白天噪声标准为55dB,夜间噪声标准为45dB,《工业企业厂界噪声标准》规定:“夜间频繁突发的噪声(如排气噪声),其峰值不准超过标准值10dB,夜间偶然突发的噪声(如短促鸣笛声),其峰值不准超过标准值15dB。本标准昼间、夜间的时间由当地人民政府按当地习惯和季节变化划定。”  相似文献   

13.
利用红外CO_2监测仪对西安南郊3种人工植被不同高度下空气CO_2浓度分别进行了3次昼夜观测,探讨了不同高度空气中CO_2的浓度动态日变化规律及其影响因素。结果表明:西安南郊地区夏季一昼夜内空气中CO_2浓度具有明显变化,从当日上午08:00到次日上午08:00,空气中CO_2浓度变化呈现出由高变低再变高的规律,这种变化特点与昼夜温度变化基本一致,但两者在时间上并不完全同步。CO_2浓度昼夜变化分为四个阶段,第一阶段在08:00—12:00,为CO_2浓度较高阶段,平均浓度为516μL?L~(-1);第二阶段在13:00—21:00,为CO_2浓度最低阶段,平均浓度为483μL?L~(-1);第三阶段在22:00到次日04:00,为CO_2浓度较低阶段,平均浓度为502μL?L~(-1);第四阶段在05:00—07:00,为CO_2浓度最高阶段,平均浓度为533μL?L~(-1)。在2 m高度范围内,空气中CO_2浓度与高度呈负相关关系,与空气湿度呈正相关关系,风速对CO_2昼夜浓度影响较小。白天光合作用强,空气对流作用强,空气中CO_2浓度明显低于夜间。  相似文献   

14.
北京典型道路交通环境机动车黑碳排放与浓度特征研究   总被引:3,自引:2,他引:1  
本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律.应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度.根据同期观测的气象数据,应用AERMOD模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证.研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子为(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1.全天时均黑碳排放强度为17.9~115.3g·km-1·h-1,其中早(7:00—9:00)晚(17:00—19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1.基于同期监测数据验证,AERMOD模型的模拟效果较好.模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)μg·m-3.由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异.日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)μg·m-3;其次为公交车,达(0.58±0.85)μg·m-3.夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)μg·m-3.  相似文献   

15.
呼和浩特市大气中多环芳烃的分布规律   总被引:7,自引:0,他引:7  
本文采用聚氨基甲酸乙酯泡沫(PUF)吸附块和玻璃纤维滤膜(GF)同时采集大气中气态和颗粒物中的多环芳烃(PAHs)。对居民区和草原清洁区分别进行冬夏两季间歇式采样,用高效液相色谱测定了蒽、芘、(芦出)、苝、苯并(a)芘、二苯并(a、h)蒽、苯并(ghi)苝等多环芳烃的含量。结果表明,在居民区四环以下的PAHs有一半以上存在于气态中,四环以上的PAHs大部分存在于颗粒物上;夏季每种PAHs在气态中的百分率比冬季高;草原清洁区与居民区PAHs在气态和颗粒物上的百分率不同;冬季居民区污染严重时间是10:00—11:30和17:30—21:30,而夏季污染严重时间是6:00—10:00和18:00—22:00。  相似文献   

16.
<正> 交通噪声在环境噪声中影响范围最大,噪声强度最高。据我省83年测量值,交通干线的白天平均等效声级为72dB(A),比其它功能区高出7~24dB(A)。所以掌握交通噪声的特征,做好交通噪声的控制工作是十分必要的。交通噪声强度主要受交通车流量的影响,因此某点交通噪声值随时间的变化很大,随机性很强。要掌握交通噪声的特征,必须进行长时间的连续监测。但是目前环境交通噪声例行监测,由于设备等条件的限制,只能进行定点定时的小量次测量。那么能否根据交通噪声的时间特征较合理地选择监测时  相似文献   

17.
于2015年夏季对深圳园山山麓(Foothill)、河谷(River Valley)和山脊(Ridge)等3种典型生境城市森林内的臭氧浓度和气象因子进行昼夜24h同步监测,研究林内臭氧浓度的变化规律及影响因素.结果表明:深圳园山3种生境城市森林内臭氧浓度的小时均值和日最大8h均值都达到了国家一级标准(分别为160,100μg/m~3);3个林地的臭氧浓度日均值都高于对照,且Ridge显著高于River Valley和Foothill;林内臭氧浓度的日变化都呈单峰曲线,表现为白天高,夜间低,在15:00~17:00达到最高,在5:00~7:00降到最低;3种林地的臭氧浓度都与温度极显著正相关,与湿度极显著负相关,此外Ridge的臭氧浓度还与风速极显著正相关.总之,深圳园山3种林分内的臭氧浓度符合人们进行森林游憩活动的空气质量要求,基于臭氧浓度,人们在5:00~7:00进行森林游憩最为适宜.  相似文献   

18.
北京冬季PM2.5中元素碳、有机碳的污染特征   总被引:19,自引:2,他引:17  
通过2003年1月对北京市区PM2.5中元素碳(EC)、有机碳(OC)连续测量,分析了其污染特征。监测资料表明,北京市区PM2.5中ρ(OC)高于ρ(EC),它们多在夜间高、白天低,且变化趋势大致相同。北京市区冬季ρ(OC) ρ(EC)的值较低。   相似文献   

19.
以杭州典型城市森林和城市湿地为研究对象,并选择城市中心区为对照,于2016年6~8月,按照数据采集频率为10 min的间隔对气温、相对湿度、风速等3项指标进行24 h动态监测,以此来分析城市森林和湿地小气候效应及对人体舒适度的影响。结果表明:城市森林和城市湿地具有明显的降温增湿作用,在气温最高的7月降温效益最明显,降温幅度分别达到1.2~3.3℃和1.0~4.1℃,白天城市森林的降温幅度更高,夜间城市湿地的降温幅度更高;在相对湿度最低的8月增湿效益最明显,增湿幅度分别达到5.8%~20.4%和12.6%~27.0%,城市湿地的增湿幅度高于城市森林;6月份城市森林、城市湿地和对照区的综合舒适度指数均较小(S6.95),适合出行。7和8月份城市森林和城市湿地的综合舒适度指数均小于对照区,全天感觉不舒适或极不舒适的时段整体均比市中心对照缩短5 h,人们在早上11∶00之前和傍晚18∶00以后到公园开展游憩活动体感会更加舒适。研究的结果可作为城市森林和湿地生态服务功能评价的一部分,并可为市民休闲出行和城市绿地规划提供理论依据。  相似文献   

20.
近年来,随着社会经济生活的不断发展,人们的生活方式和居住环境都在发生着巨大的变化,环境噪声污染问题也越来越突出,也逐渐得到政府部门及城市普通居民的重视。国家修订了相关的噪声标准,用GB12348—2008《工业企业厂界环境噪声排放标准》取代了GB12348—90和GB12349—90。为了准确测量厂界噪声,引入噪声测量不确定度,通过对厂界噪声的测定分析,根据噪声背景值修正理论,分析修正的误差和测量不确定度,同时对厂界噪声测定不确定度作出评估。并提出为合理评价厂界噪声迭标与否.在噪声的监测报告中应对本次监测的不确定度进行评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号