首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
One hundred workers carried personal air sampling equipment during three days to assess exposure to inhalable and respirable Mn. A novel four-step chemical fractionation procedure developed for the speciation of Mn in workroom aerosols was applied for selected aerosol filters. Blood and urine samples were analysed for Mn. The geometric mean (GM) concentrations of inhalable (n = 265) and respirable (n = 167) Mn determined in all filters were 254 microg m(-3) and 28 microg m(-3) respectively. Only 10.6% (95% CI 8.9-12.5) respirable Mn was found in the inhalable fraction when inhalable and respirable samples collected in parallel were considered (n = 153 pairs). There was a high correlation (Pearson's r = 0.70; p < 0.001) between respirable and inhalable Mn. The largest amounts of Mn in the inhalable aerosol fraction were found as Mn0 and Mn2+ (47.4%), whereas 28% was practically "insoluble". The associations between B-Mn and aerosol concentrations of Mn were weak, but an association was found between U-Mn and respirable Mn; Pearson's r being 0.38 between "soluble" respirable Mn and U-Mn. No significant association was found between the "insoluble" components (probably SiMn) and Mn in biological samples.  相似文献   

2.
Urinary copper (Cu), nickel (Ni) and cobalt (Co) concentrations were determined for 127 Cu refinery workers (40 females, 87 males), with values of the 95% upper confidence interval of the geometric mean in nmol per mmol creatinine of 89 (Ni), 42 (Cu) and 3.4 (Co) for electrorefinery workers. In the pyrometallurgical departments, the corresponding concentrations were 37 (Ni), 99 (Cu) and 11 (Co). Female workers had higher Co urinary concentrations than males (p< or = 0.05) while no gender difference was observed for Cu and Ni. Inter-elemental correlations were moderate to weak. Based on the inhalable aerosol levels reported previously for the same workers, the observed urinary Cu concentrations were considerably lower than expected, relative to Co and Ni. This is interpreted in terms of the current understanding of Cu homeostasis.  相似文献   

3.
In support of a feasibility study of reproductive and developmental health among females employed in the Monchegorsk (Russia) nickel refinery, personal exposure and biological monitoring assessments were conducted. The inhalable aerosol fraction was measured and characterised by chemical speciation and particle-size distribution measurements. Unexpected findings were that: (i), pyrometallurgical working environments had significant levels of water-soluble nickel; (ii), significant exposure to cobalt occurred for the nickel workers; (iii), particles of size corresponding to the thoracic and respirable fractions appeared to be virtually absent in most of the areas surveyed. The water-soluble fraction is judged to be primarily responsible for the observed urinary nickel and cobalt concentrations. It is concluded relative to current international occupational-exposure limits for nickel in air, and because of the high nickel concentrations observed in urine, that the Monchegorsk nickel workers are heavily exposed. The implication of this finding for follow-up epidemiological work is alluded to.  相似文献   

4.
The aim of this study was to characterise personal exposures to dust, acid vapours, and gases among workers in a Norwegian nitrate fertiliser production plant, as part of an ongoing epidemiological study. In total, 178 inhalable and 179 thoracic aerosol mass fraction samples were collected from randomly chosen workers (N = 141) from three compound fertiliser departments (A, B and C), a calcium nitrate fertiliser production department, nitric acid- and ammonia-production departments, and a shipping department. The overall median inhalable and thoracic aerosol mass concentrations were generally low (1.1 mg m(-3) (min-max: <0.93-45) and 0.21 mg m(-3) (min-max: <0.085-11), respectively). Workers at the compound fertiliser departments B and C had significantly higher inhalable aerosol mass air concentrations compared to the other departments (p < 0.05), except for compound fertiliser department A; however, the difference between the compound fertiliser department C and calcium nitrate department was slightly above the significant level. Workers at the compound fertiliser department A had significantly higher thoracic aerosol mass air concentrations compared to the other departments (p < 0.05), except for compound fertiliser departments B and C. The results indicate that the extrathoracic aerosol fraction of the aerosol compared to the thoracic fraction dominated in most departments. Measurement of the main constituents Ca, K, Mg, and P in the water-soluble and water-insoluble aerosol mass fractions showed that the air concentrations of these elements were low. There is, however, a shift towards more water-soluble species as the production goes from raw material with phosphate rock towards the final product of fertilisers. Overall, the arithmetic mean of water-soluble Ca in the thoracic mass fraction was 51% (min-max: 1-100). A total of 169 personal samples were analysed for HNO(3) vapour and HF. The highest median concentration of HNO(3) (0.63 mg m(-3)) was in the compound fertiliser departments B, and all measurements but four of the HF concentrations were below the LOD of 190 μg m(-3). Exposures to NH(3), CO and NO(2) were measured using direct-reading electrochemical sensors and the time weighted overall averages were all below the LODs of the respective sensors, NH(3) 2 ppm; CO 2 ppm; and NO(2) 0.2 ppm, but some short-term peaks were detected. Even though our results indicate that the workers may experience peak exposure episodes when performing job tasks such as cleaning or maintenance work, the overall air concentrations are well below what is considered to cause known health risks.  相似文献   

5.
The present study aimed to assess whether urinary germanium concentration can be used as a biomarker of inhalation exposure to airborne dust from metallic germanium (Ge) or GeO2 in the occupational setting. A novel hydride generation-based method coupled with fow-injection graphite furnace atomic absorption spectrometry (HG/FI-GFAAS) was developed for the determination of urinary germanium. It was found that urinary germanium concentration could be reliably determined by a standard additions method after thorough digestion of the urine and careful pH adjustment of the digest. The limit of detection (LOD) in urine for the HG/FI-GFAAS method was 0.25 microg Ge L(-1). In Belgian control male subjects, the urinary germanium concentration was below this LOD. In 75 workers currently exposed to inorganic germanium compounds, respirable and inhalable concentrations of germanium in the aerosols were measured on Monday and Friday at the job sites using personal air samplers. Spot-urine samples were collected on the same days before and after the work shift. The germanium concentrations of respirable dust correlated very well with those of inhalable dust and represented 20% of the inhalable fraction. Workers exposed to metallic Ge dust were on average ten times less exposed to germanium than those whose exposure involved GeO2 (3.4 versus 33.8 microg Ge m(-3)). This difference was reflected in the urinary germanium concentrations (3.4 versus 23.4 microg Ge g(-1) creatinine). Regression analysis showed that the concentration of germanium in the inhalable fraction explained 42% of the post-shift urinary germanium concentration either on Monday or on Friday, whereas in a subgroup of 52 workers mainly exposed to metallic germanium dust 57% (r = 0.76) of the Monday post-shift urinary germanium was explained. Urinary elimination kinetics were studied in seven workers exposed to airborne dust of either metallic Ge or GeO2. The urinary elimination rate of germanium was characterised by half-times ranging from 8.2 to 18.1 h (on average 12 h 46 min). The present study did not allow discrimination between the germanium species to which the workers were exposed, but it showed fast urinary elimination kinetics for inhalation exposure to dust of metallic Ge and GeO2. It pointed out that urine samples taken at the end of the work shift can be used for biological monitoring of inorganic germanium exposure in the occupational setting.  相似文献   

6.
The Respicon has been introduced as a sampler for health related measurements of airborne contaminants at workplaces. The instrument is aimed at simultaneous collection of three health related aerosol fractions: (a) the coarser inhalable fraction, defining the aerosol fraction that may enter the nose and mouth during breathing; (b) the intermediate thoracic fraction, defining the fraction that may penetrate beyond the larynx and so reach the lung; and (c) the finer respirable fraction, defining the fraction that may penetrate to gas exchange region of the lung. The instrument has a number of features attractive to occupational hygienists: in addition to providing the three aerosol fractions simultaneously, it is light and compact enough to be used as a personal sampler. yet can be a tripod mounted for area sampling, it can provide samples not only for gravimetric analysis but also microscopic and chemical analyses; and it is also available in a photometric direct-reading version. The instrument has previously been evaluated as an area sampler and, in this mode of operation, has shown reasonable accuracy in collecting respirable, thoracic and inhalable particles, the latter up to particle diameters of ca. 80 microm. Except for some scattered unpublished data there exist no systematic investigations in the Respicon's performance when used as a personal sampler in the industrial environment. In this paper, we will report on a study of side by side comparison of the Respicon with the IOM inhalable sampler, regarded as a reference instrument for the inhalable fraction. The main study was performed at six different workplaces in a nickel refinery. Statistical analysis of the gravimetrically-determined concentration data reveals consistently lower aerosol exposure values for the Respicon as compared to the IOM sampler. The data for the nickel workplaces are compared with findings from other studies. The results are interpreted in the light of the overall results and the possibility of introducing a correction factor is discussed.  相似文献   

7.
An investigation of the relationship between observed nickel aerosol exposures and urinary nickel excretion was undertaken at a Scandinavian nickel refinery. The goal of the study was to assess the impact of nickel aerosol speciation, the use of particle size-selective sampling instrumentation and adjustment of urinary levels for creatinine excretion on the usefulness of urinary nickel excretion as a marker for exposure. Urinary nickel measurements and paired 'total' and inhalable aerosol exposure measurements were collected each day for one week from refinery workers in four process areas. The mean observed urinary nickel concentration was 12 micrograms L-1 (11 micrograms of Ni per g of creatinine). The strongest relationships between urinary excretion and aerosol exposure were found when urinary nickel levels were adjusted for creatinine excretion and when exposure to only soluble forms of nickel aerosol was considered. No significant difference was observed between measures of 'total' and inhalable aerosol in the ability to predict urinary excretion patterns. In the light of these results, it is recommended that consideration be given to the chemical species distribution of nickel aerosol in the use of urinary nickel measurements as a screening tool for cancer risk in occupationally-exposed populations.  相似文献   

8.
Alumina used in the production of primary aluminium contains Be which partly vaporises from the cryolite bath into the workroom atmosphere. Since Be may be toxic at lower exposure levels than previously thought, the personal exposure to Be among workers in 7 Norwegian primary smelters has been assessed. In total, 480 personal Respicon? virtual impactor full shift air samples have been collected during 2 sampling campaigns and analysed for water soluble Be, Al and Na using inductively coupled plasma optical emission spectrometry. In addition, water soluble F(-) has been measured by ion chromatography. The Be air concentrations in the inhalable, thoracic and respirable aerosol fractions have been calculated. The Be concentrations in the inhalable aerosol fraction vary between the different smelters. The highest GM concentration of Be in the inhalable fraction (122 ng m(-3), n = 30) was measured in the prebake pot room of a smelter using predominantly Jamaican alumina where also the highest individual air concentration of 270 ng m(-3) of Be was identified. The relative distribution of Be in the different aerosol fractions was fairly constant with the mean Be amount for the two sampling campaigns between 44-49% in the thoracic fraction expressed as % of the inhalable amount. Linear regression analysis shows a high correlation between water soluble Be, Al, F and Na describing an average measured chemical bulk composition of the water soluble thoracic fraction as Na(5.7)Al(3.1)F(18). Be is likely to be present as traces in this particulate matter by replacing Al atoms in the condensed fluorides and/or as a major element in a nanoparticle sized fluoride. Thus, the major amount of Be present in the work room atmosphere of Al smelter pot rooms will predominantly be present in combination with substantial amounts of water soluble Al, F and Na.  相似文献   

9.
The exposure of paving workers to polycyclic aromatic hydrocarbons (PAH) during stone mastic asphalt (SMA) paving and remixing was evaluated. The effects on the workers' PAH exposure were also evaluated during the use of an industrial by-product, coal fly ash (CFA), instead of limestone as the filler in the SMA. The PAH exposure was measured by personal air sampling and by analysing the levels of urinary naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in the workers' pre- and post-shift urine samples. The respiratory PAH exposure of the paving workers (geometric mean (GM) 5.7 microg m(-3)) was about ten-fold that of the traffic controllers (GM 0.43 microg m(-3)). The levels of PAH metabolites were significantly higher (p < 0.05) in the post-shift urine samples than in the pre-shift urine samples, and the levels of metabolites in the post-shift urine of paving workers were significantly higher than in that of the controls (p < 0.01). Urinary 1-naphthol correlated well with the airborne concentrations of the two- to three-ring PAHs (r = 0.544, p = 0.003) and naphthalene (r = 0.655, p < 0.001), when non-smoking paving workers were tested. A good correlation was observed between urinary 1-OHP and the airborne concentrations of the four- to six-ring PAHs (r = 0.524, p = 0.003) as well as total PAHs (r = 0.575, p = 0.001). The concentrations of 1-OHP and phenanthrols in the urine of the pavers were significantly higher (p < 0.01) during remixing than during SMA paving. The CFA in the asphalt had no effect on the airborne PAH exposure or on the concentrations of the PAH metabolites in the paving workers' urine.  相似文献   

10.
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.  相似文献   

11.
The aim of this study was to assess the associations between airborne and dustborne microbial contaminants (endotoxin and β-D-glucan) and estimate the effects of home characteristics on exposure levels of these microbial contaminants. Endotoxin and β-D-glucan concentrations in airborne inhalable particles, airborne PM1 (<1 μm) and vacuumed dust from 184 residential homes were determined using specific Limulus amebocyte assays. Home characteristics were recorded by visual inspection and questionnaires. Linear regression and correlation analyses were performed. Inhalable endotoxin correlated with dust endotoxin (r = 0.34, p < 0.001) and PM1 endotoxin (r = 0.33, p < 0.001). Inhalable β-D-glucan correlated with dust β-D-glucan (r = 0.18, p < 0.01), but not with PM1 β-D-glucan. Significant correlation was also found between PM1 and dust concentrations for endotoxin (r = 0.26, p < 0.001), but not for β-D-glucan. Multivariate regression analyses showed only one significant association between airborne contaminants and environmental characteristics: inhalable β-D-glucan was positively associated with relative humidity with an effect size (change in the dependent variable corresponding to a unit increase in the independent variable) of 2.32 and p < 0.05. In contrast, several associations were found between dust concentrations and environmental characteristics. Dust endotoxin was positively associated with temperature (2.87, p < 0.01) and number of inhabitants (2.76, p < 0.01), whereas dust β-D-glucan was inversely associated with the presence of dogs (-2.24, p < 0.05) and carpet (-3.05, p < 0.01) in the home. In conclusion, dustborne contaminants were more strongly affected by home characteristics than airborne contaminants. Furthermore, even though statistically significant, the correlations between airborne and dustborne contaminants were weak. This indicates that airborne concentrations cannot be reliably predicted based on dustborne concentrations.  相似文献   

12.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

13.
Total suspended particulate (TSP), PM(2.5) and BTEX were collected in nine offices in the province of Antwerp, Belgium. Both indoor and outdoor aerosol samples were analysed for their weight, elemental composition, and water-soluble fraction. Indoor TSP and PM(2.5) concentrations ranged from 7-31 microg m(-3) and 5-28 microg m(-3), with an average of 18 and 11 microg m(-3), respectively. Of all the elements analysed in indoor TSP, more than 95% was represented by Al, Si, K, Ca, Fe, Cl and S, accounting for 12% of the TSP by mass. The other elements showed significant enrichment relative to the earth's crust. The water-soluble ionic fraction accounted for almost 30% of the sampled indoor TSP by weight, and was enriched by anthropogenic activities. It was shown that the indoor PM levels varied among the offices, depending on the ventilation pattern, location, and occupation density of the office. Indoor BTEX levels ranged together from 5-47 microg m(-3) and were considerably higher than the corresponding outdoor levels. It was observed that some recently constructed and renovated buildings were clearly burdened with elevated levels for toluene, ethyl benzene, and xylenes, while outdoor air was found to be the main source for BTEX levels at the 'older' offices.  相似文献   

14.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   

15.
Trace element content of marine algae species collected from the Black Sea coasts were determined by atomic absorption spectroscopy after microwave digestion. Trace element content in marine algae species were 1.70-17.1 microg/g for copper, 3.64-64.8 microg/g for zinc, 9.98-285 microg/g for manganese, 99-3,949 microg/g for iron, 0.50-11.6 microg/g for chromium, 0.27-36.2 microg/g for nickel, 11-694 microg/kg for selenium, 0.50-44.6 microg/kg for cadmium, 1.54-3,969 microg/kg for lead, 1.56-81.9 microg/kg for cobalt. While iron was the highest trace element concentration, cadmium was the lowest in samples. Most of the analyzed samples were edible. The samples are consumed for human diet in several countries.  相似文献   

16.
This study presents concentrations of iron, zinc, copper, lead and cadmium in the feathers of 3 shorebird species (n = 29) from Okgu Mudflat, Korea in the East Asian-Australian Migration Flyways. Lead concentrations (ANOVA, p < 0.001) in Red-necked Stints (geomean = 9.61 μg g(-1) dry weight) were higher than in Terek Sandpipers (geomean = 5.56 μg g(-1) dry weight) which in turn were higher than in Great Knots (geomean = 2.78 μg g(-1) wet weight). Cadmium concentrations (ANOVA, p < 0.001) were higher in Great Knots (geomean = 2.97 μg g(-1) wet weight) and in Red-necked Stints (geomean = 2.70 μg g(-1) dry weight) than in Terek Sandpipers (geomean = 0.33 μg g(-1) dry weight). Lead (r = 0.574, p < 0.01) and cadmium (r = 0.380, p < 0.05) concentrations between feathers and livers of shorebirds were significantly correlated. Lead concentrations in 65.5% (19 individuals) of shorebirds exceeded a toxicity threshold for feathers (4 μg g(-1) dry weight). Iron, zinc, copper, lead and cadmium concentrations in feathers were within the range of earlier studies for wild birds, but lead concentrations in Red-necked Stints were higher than those reported in other studies. Because lead concentrations in feathers and livers of Red-necked Stints were markedly higher than in other shorebirds, we suggest that Red-necked Stints were exposed to higher lead concentrations than the other shorebirds on their breeding or wintering grounds.  相似文献   

17.
A new method for the determination of iron, cobalt, nickel, copper, zinc and manganese in drinking water by the reversed-phase high-performance liquid chromatography (RP-HPLC) with 2-(2-quinolinylazo)-5-diethylaminophenol (QADEAP) as precolumn derivatizing reagent was studied in this paper. The iron, cobalt, nickel, copper, zinc, and manganese ions react with QADEAP to form color chelates in the presence of cetyl trimethylammonium bromide (CTMAB) and acetic acid-sodium acetic buffer solution medium of pH 4.0. These chelates were enriched by solid-phase extraction with a Waters Nova-Pak C18 cartridge and eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The enrichment factor of 100 was achieved. Then the chelates were separated on a Waters Nova-Pak C18 column (3.9 x 150 mm, 5 microm) by gradient elution with methanol (containing 0.2% of acetic acid and 0.1% of CTMAB) and 0.05 mol L(-1) acetic acid-sodium acetic buffer solution (containing 0.1% of CTMAB) (pH 4.0) as mobile phase at a flow rate of 0.5 ml min(-1), and monitored with a photodiode array detector from 450 approximately 700 nm. The detection limits (S/N = 3) of iron, cobalt, nickel, copper, zinc and manganese are 0.8, 1.1, 0.9, 1.1, 1.5 and 2.0 ng L(-1), respectively, in the original sample. This method can be applied to determination at the microg L(-1) level of iron, cobalt, nickel, copper, zinc and manganese in drinking water with good results.  相似文献   

18.
Until 2009, the limit values for airborne sulfuric acid in Europe were based on the inhalable particle fraction (e.g. MAK (Maximum allowed concentration at workplace) value 0.1 mg m(-3) as the inhalable fraction). With the publication of the Commission Directive 2009/161/EU, an Indicative Occupational Exposure Limit Value (IOELV) of 0.05 mg m(-3) for sulfuric acid aerosols was based for the first time on the thoracic particle fraction. To permit a comparison of the measured values for the inhalable fraction with those of the thoracic fraction and to quantify the thoracic fraction, a cyclone was fabricated out of sulfuric-acid-resistant stainless steel that achieves suitable collection characteristics (PM(10)) at a flow rate of 5.34 L min(-1). 49 measurements were carried out in parallel in 21 companies. At concentrations well below the IOELV, there is little difference between the thoracic and inhalable particle concentrations. At higher concentrations (>0.1 mg m(-3) inhalable aerosol), larger droplets have a marked effect on the measured values and the thoracic fraction accounts for only 32.1 ± 12.5% of the inhalable fraction. The EU's IOELV and the proposal of the MAK Commission therefore provide a comparable level of protection. In the transposition of the IOELV into national law, an air limit of 0.1 mg m(-3) could therefore be implemented for the inhalable fraction.  相似文献   

19.
In the metropolitan area of S?o Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Janio Quadros and Maria Maluf road tunnels, both located in S?o Paulo. The Janio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Janio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in S?o Paulo tunnels are higher than those found in other cities of the world.  相似文献   

20.
To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号