首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   

2.
Alumina used in the production of primary aluminium contains Be which partly vaporises from the cryolite bath into the workroom atmosphere. Since Be may be toxic at lower exposure levels than previously thought, the personal exposure to Be among workers in 7 Norwegian primary smelters has been assessed. In total, 480 personal Respicon? virtual impactor full shift air samples have been collected during 2 sampling campaigns and analysed for water soluble Be, Al and Na using inductively coupled plasma optical emission spectrometry. In addition, water soluble F(-) has been measured by ion chromatography. The Be air concentrations in the inhalable, thoracic and respirable aerosol fractions have been calculated. The Be concentrations in the inhalable aerosol fraction vary between the different smelters. The highest GM concentration of Be in the inhalable fraction (122 ng m(-3), n = 30) was measured in the prebake pot room of a smelter using predominantly Jamaican alumina where also the highest individual air concentration of 270 ng m(-3) of Be was identified. The relative distribution of Be in the different aerosol fractions was fairly constant with the mean Be amount for the two sampling campaigns between 44-49% in the thoracic fraction expressed as % of the inhalable amount. Linear regression analysis shows a high correlation between water soluble Be, Al, F and Na describing an average measured chemical bulk composition of the water soluble thoracic fraction as Na(5.7)Al(3.1)F(18). Be is likely to be present as traces in this particulate matter by replacing Al atoms in the condensed fluorides and/or as a major element in a nanoparticle sized fluoride. Thus, the major amount of Be present in the work room atmosphere of Al smelter pot rooms will predominantly be present in combination with substantial amounts of water soluble Al, F and Na.  相似文献   

3.
Development of a field method for measuring manganese in welding fume   总被引:1,自引:0,他引:1  
Workers who perform routine welding tasks are potentially exposed to fume that may contain manganese. Manganese may cause respiratory problems and is implicated in causing the occurrence of Parkinson-like symptoms. In this study, a field colorimetric method for extracting and measuring manganese in welding fume was developed. The method uses ultrasonic extraction with an acidic hydrogen peroxide solution to extract welding fume collected on polyvinyl chloride filters. Commercially available pre-packaged reagents are used to produce a colored solution, created by a reaction of manganese(ii) with 1-(2-pyridylazo)-2-naphthol. Absorbance measurements are then made using a portable spectrophotometer. The method detection limit and limit of quantification (LOQ) were 5.2 microg filter(-1) and 17 microg filter(-1), respectively, with a dynamic range up to 400 microg filter(-1). When the results are above the LOQ for the colorimetric method, the manganese masses are equivalent to those measured by the International Organization for Standardization Method 15202-2, which employs a strong acid digestion and analysis using inductively coupled plasma-optical emission spectrometry.  相似文献   

4.
The present study aimed to assess whether urinary germanium concentration can be used as a biomarker of inhalation exposure to airborne dust from metallic germanium (Ge) or GeO2 in the occupational setting. A novel hydride generation-based method coupled with fow-injection graphite furnace atomic absorption spectrometry (HG/FI-GFAAS) was developed for the determination of urinary germanium. It was found that urinary germanium concentration could be reliably determined by a standard additions method after thorough digestion of the urine and careful pH adjustment of the digest. The limit of detection (LOD) in urine for the HG/FI-GFAAS method was 0.25 microg Ge L(-1). In Belgian control male subjects, the urinary germanium concentration was below this LOD. In 75 workers currently exposed to inorganic germanium compounds, respirable and inhalable concentrations of germanium in the aerosols were measured on Monday and Friday at the job sites using personal air samplers. Spot-urine samples were collected on the same days before and after the work shift. The germanium concentrations of respirable dust correlated very well with those of inhalable dust and represented 20% of the inhalable fraction. Workers exposed to metallic Ge dust were on average ten times less exposed to germanium than those whose exposure involved GeO2 (3.4 versus 33.8 microg Ge m(-3)). This difference was reflected in the urinary germanium concentrations (3.4 versus 23.4 microg Ge g(-1) creatinine). Regression analysis showed that the concentration of germanium in the inhalable fraction explained 42% of the post-shift urinary germanium concentration either on Monday or on Friday, whereas in a subgroup of 52 workers mainly exposed to metallic germanium dust 57% (r = 0.76) of the Monday post-shift urinary germanium was explained. Urinary elimination kinetics were studied in seven workers exposed to airborne dust of either metallic Ge or GeO2. The urinary elimination rate of germanium was characterised by half-times ranging from 8.2 to 18.1 h (on average 12 h 46 min). The present study did not allow discrimination between the germanium species to which the workers were exposed, but it showed fast urinary elimination kinetics for inhalation exposure to dust of metallic Ge and GeO2. It pointed out that urine samples taken at the end of the work shift can be used for biological monitoring of inorganic germanium exposure in the occupational setting.  相似文献   

5.
Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< or = +/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published.  相似文献   

6.
The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250–280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5–35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.  相似文献   

7.
The exposure characterisation described in this paper for 135 copper refinery workers (45 females, 90 males) focuses on the concentrations of copper, nickel and other trace elements in the inhalable aerosol fractions, as well as in the water-soluble and water-insoluble subfractions. Some information is also provided on the thoracic and respirable aerosol fractions. Further, results are presented for volatile hydrides of arsenic and selenium released in the copper purification steps of the electrorefining process. For the pyrometallurgical operations, a comparison of the geometric means for the inhalable aerosol fraction indicated that water-soluble copper levels were on average 19-fold higher compared to nickel (p < 0.001) and a significant association was evident between them (r = 0.87, p < 0.001); for the insoluble subfraction, the copper : nickel ratio was 12.5 (p < 0.001) and the inter-element correlation had r = 0.98 and p < 0.001. Although for the electrorefinery workers the relative inhalable concentrations of copper and nickel were not significantly different (p > 0.05), the corresponding inter-element associations were: slope of 7.7, r= 0.54, p < or =0.001 for the water-soluble subfraction and slope of 1.3, r = 0.71 and p < or =0.001 for the water-insoluble subfraction. On average, a good proportion of the inhalable copper and nickel were found in the thoracic (40%) and respirable (20%) aerosol fractions. Cobalt air concentrations were generally low with geometric means and 95% confidence intervals of 3.1 (2.4-4.2)microg m(-3) (pyrometallurgical workers) and 0.3 (0.4-0.5) microg m(-3)(electrorefinery workers). Similarly, the maximum concentrations of cadmium and lead were low, respectively 4 and 25 microg m(-3). Of the hydrides, tellurium and antimony could not be detected, but for the arsenic (arsine) and selenium hydrides measurable exposure occurred for almost all electrorefinery workers, although the levels were generally low at 0.2 microg m(-3).  相似文献   

8.
Studies on personal dust and endotoxin concentrations among animal farmers have been either small or limited to a few sectors in their investigations. The present study aimed to provide comparable information on the levels and variability of exposure to personal dust and endotoxin in different types of animal farmers. 507 personal inhalable dust samples were collected from 327 farmers employed in 54 pig, 26 dairy, 3 poultry, and 3 mink farms in Denmark. Measurements in pig and dairy farmers were full-shift and performed during summer and winter, while poultry and mink farmers were monitored during 4 well-defined production stages. The collected samples were measured for dust gravimetrically and analyzed for endotoxin by the Limulus amebocyte lysate assay. Simple statistics and random-effect analysis were used to describe the levels and the variability in measured dust and endotoxin exposure concentrations. Measured inhalable dust levels had an overall geometric mean of 2.5 mg m(-3) (range 相似文献   

9.
One hundred workers carried personal air sampling equipment during three days to assess exposure to inhalable and respirable Mn. A novel four-step chemical fractionation procedure developed for the speciation of Mn in workroom aerosols was applied for selected aerosol filters. Blood and urine samples were analysed for Mn. The geometric mean (GM) concentrations of inhalable (n = 265) and respirable (n = 167) Mn determined in all filters were 254 microg m(-3) and 28 microg m(-3) respectively. Only 10.6% (95% CI 8.9-12.5) respirable Mn was found in the inhalable fraction when inhalable and respirable samples collected in parallel were considered (n = 153 pairs). There was a high correlation (Pearson's r = 0.70; p < 0.001) between respirable and inhalable Mn. The largest amounts of Mn in the inhalable aerosol fraction were found as Mn0 and Mn2+ (47.4%), whereas 28% was practically "insoluble". The associations between B-Mn and aerosol concentrations of Mn were weak, but an association was found between U-Mn and respirable Mn; Pearson's r being 0.38 between "soluble" respirable Mn and U-Mn. No significant association was found between the "insoluble" components (probably SiMn) and Mn in biological samples.  相似文献   

10.
The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.  相似文献   

11.
Exposure to diesel exhaust was evaluated in summer and winter by measuring vapour and particle phase polycyclic aromatic hydrocarbons (PAHs). Fifteen PAHs were simultaneously determined from the air samples obtained from truck drivers collecting household waste and maintenance personnel at a waste handling centre. The major compounds analysed from the personal air samples of exposed workers were naphthalene, phenanthrene and fluorene. The total PAH exposure (sum of 15 PAHs) of garbage truck drivers ranged from 71 to 2,660 ng m(-3) and from 68 to 900 ng m-3 in the maintenance work. The exposure of garbage truck drivers to benzo[a]pyrene (B[a]P) ranged from the mean of 0.03 to 0.3 ng m(-3) whereas no B[a]P in control samples or in those collected from maintenance workers was detected. A statistically significant difference in diesel-derived PAH exposure between the garbage truck drivers and the control group in both seasons (in summer p = 0.0022, degrees of freedom (df) 70.5; and in winter p < 0.0001, df = 80.4) was observed. Also, a significant difference in PAH exposure between the garbage truck drivers and the maintenance workers (in summer p < 0.0001, df = 50.1; and in winter p < 0.0001, df = 44.2) was obtained.  相似文献   

12.
An investigation of the relationship between observed nickel aerosol exposures and urinary nickel excretion was undertaken at a Scandinavian nickel refinery. The goal of the study was to assess the impact of nickel aerosol speciation, the use of particle size-selective sampling instrumentation and adjustment of urinary levels for creatinine excretion on the usefulness of urinary nickel excretion as a marker for exposure. Urinary nickel measurements and paired 'total' and inhalable aerosol exposure measurements were collected each day for one week from refinery workers in four process areas. The mean observed urinary nickel concentration was 12 micrograms L-1 (11 micrograms of Ni per g of creatinine). The strongest relationships between urinary excretion and aerosol exposure were found when urinary nickel levels were adjusted for creatinine excretion and when exposure to only soluble forms of nickel aerosol was considered. No significant difference was observed between measures of 'total' and inhalable aerosol in the ability to predict urinary excretion patterns. In the light of these results, it is recommended that consideration be given to the chemical species distribution of nickel aerosol in the use of urinary nickel measurements as a screening tool for cancer risk in occupationally-exposed populations.  相似文献   

13.
In support of a feasibility study of reproductive and developmental health among females employed in the Monchegorsk (Russia) nickel refinery, personal exposure and biological monitoring assessments were conducted. The inhalable aerosol fraction was measured and characterised by chemical speciation and particle-size distribution measurements. Unexpected findings were that: (i), pyrometallurgical working environments had significant levels of water-soluble nickel; (ii), significant exposure to cobalt occurred for the nickel workers; (iii), particles of size corresponding to the thoracic and respirable fractions appeared to be virtually absent in most of the areas surveyed. The water-soluble fraction is judged to be primarily responsible for the observed urinary nickel and cobalt concentrations. It is concluded relative to current international occupational-exposure limits for nickel in air, and because of the high nickel concentrations observed in urine, that the Monchegorsk nickel workers are heavily exposed. The implication of this finding for follow-up epidemiological work is alluded to.  相似文献   

14.
Until 2009, the limit values for airborne sulfuric acid in Europe were based on the inhalable particle fraction (e.g. MAK (Maximum allowed concentration at workplace) value 0.1 mg m(-3) as the inhalable fraction). With the publication of the Commission Directive 2009/161/EU, an Indicative Occupational Exposure Limit Value (IOELV) of 0.05 mg m(-3) for sulfuric acid aerosols was based for the first time on the thoracic particle fraction. To permit a comparison of the measured values for the inhalable fraction with those of the thoracic fraction and to quantify the thoracic fraction, a cyclone was fabricated out of sulfuric-acid-resistant stainless steel that achieves suitable collection characteristics (PM(10)) at a flow rate of 5.34 L min(-1). 49 measurements were carried out in parallel in 21 companies. At concentrations well below the IOELV, there is little difference between the thoracic and inhalable particle concentrations. At higher concentrations (>0.1 mg m(-3) inhalable aerosol), larger droplets have a marked effect on the measured values and the thoracic fraction accounts for only 32.1 ± 12.5% of the inhalable fraction. The EU's IOELV and the proposal of the MAK Commission therefore provide a comparable level of protection. In the transposition of the IOELV into national law, an air limit of 0.1 mg m(-3) could therefore be implemented for the inhalable fraction.  相似文献   

15.
The objective of this study was to compare measured concentrations of rubber process dust and rubber fume originating from different sources in the British rubber manufacturing industry. Almost 8000 exposure measurements were obtained from industry-based survey results collected by the British Rubber Manufacturers' Association (BRMA), and covering the years 1977 to 2002, and from a series of small surveys contained in the Health and Safety Executive's (HSE) National Exposure Database (HSE-NEDB) from 1980 to 2002. The analysis investigated temporal trends in the exposure concentrations and the underlying main factors responsible for these changes. Analyses were carried out using hierarchical linear mixed effects models. Average personal exposures to rubber process dust and rubber fumes were respectively a factor 2 and 4 higher for the HSE-NEDB data when compared to data originating from the industry (BRMA data). Personal exposure to rubber process dust decreased on average by 4.1% (95% CI 4.7-3.6) annually for the BRMA data and slightly less at 2.3% (95% CI 5.2-0.7%) per annum for the HSE-NEDB data. Personal exposure to rubber fume also showed a downward temporal trend of 2.9% (95% CI 3.6-2.3%) and 4.8% (95% CI 7.4-2.1%) annually for the BRMA and HSE-NEDB data, respectively. These trends differed considerably between departments. No major changes in the estimated temporal trends in exposure concentrations were observed after including the presence of local exhaust ventilation in the models for any department in the BRMA and HSE-NEDB datasets. Lack of information on the quality and status of the local exhaust ventilation is the most likely explanation for this. In conclusion, even though there were relatively similar downward time trends in both rubber process dust and fume concentrations in both datasets, the source of exposure data was an important determinant of average exposure concentrations present in the British rubber manufacturing industry. Lack of detailed auxiliary information on company size, reason for sampling, measurement strategy and other potentially important determinants of exposure prevented an explanation for the observed differences in exposure level.  相似文献   

16.
The objective of the research work was to evaluate the efficiency of three different sampling methods (Ghost Wipe?, micro-vacuum, and ChemTest?) in the recovery of Be dust by assessing: (1) four Be compounds (beryllium acetate, beryllium chloride, beryllium oxide and beryllium aluminium), (2) three different surfaces (polystyrene, glass and aluminium) and (3) inter-operator variation. The three sampling methods were also tested on site in a laboratory of a dental school for validation purposes. The Ghost Wipe? method showed recovery ranging from 43.3% to 85.8% for all four Be compounds and for all three quantities of Be spiked on Petri dishes, while recovery with the micro-vacuum method ranged from 0.1% to 12.4%. On polystyrene dishes with 0.4 μg Be, the recovery ranged from 48.3% to 81.7%, with an average recovery of 59.4% for Operator 1 and 68.4% for Operator 2. The ChemTest? wipe method with beryllium acetate, beryllium chloride, and AlBeMet? showed analogous results that are in line with the manufacturer's manual, but collection of beryllium oxide was negative. In the dental laboratory, Ghost Wipe? samplings showed better recovery than the micro-vacuum method. The ratios between the recovered quantities of Be in each location where the Ghost Wipe? was tested differed substantially, ranging from 1.45 to 64. In the dental laboratory, a faint blue color indicating the presence of Be was observed on the ChemTest? wipes used in two locations out of six. In summary, the Ghost Wipe? method was more efficient than micro-vacuuming in collecting the Be dust from smooth, non-porous surfaces such as Petri dishes by a factor of approximately 18. The results obtained on site in a dental laboratory also showed better recovery with Ghost Wipes?. However, the ratio of Be recovered by Ghost Wipes? versus micro-vacuuming was much lower for surfaces where a large amount of dust was present. Wet wiping is preferred over micro-vacuuming for beryllium forms, but this conclusion probably applies to the ultra-low particulate loading levels (0.4 micrograms or less) which was tested in this study.  相似文献   

17.
Kelp may be useful as a bioindicator because they are primary producers that are eaten by higher trophic level organisms, including people and livestock. Often when kelp or other algae species are used as bioindicators, the whole organism is homogenized. However, some kelp can be over 25 m long from their holdfast to the tip of the blade, making it important to understand how contaminant levels vary throughout the plant. We compared the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in five different parts of the kelp Alaria nana to examine the variability of metal distribution. To be useful as a bioindicator, it is critical to know whether levels are constant throughout the kelp, or which part is the highest accumulator. Kelp were collected on Adak Island in the Aleutian Chain of Alaska from the Adak Harbor and Clam Cove, which opens onto the Bering Sea. In addition to determining if the levels differ in different parts of the kelp, we wanted to determine whether there were locational or size-related differences. Regression models indicated that between 14% and 43% of the variation in the levels of arsenic, cadmium, chromium, manganese, mercury, and selenium was explained by total length, part of the plant, and location (but not for lead). The main contributors to variability were length (for arsenic and selenium), location (mercury), and part of the plant (for arsenic, cadmium, chromium and manganese). The higher levels of selenium occurred at Clam Cove, while mercury was higher at the harbor. Where there was a significant difference among parts, the holdfast had the highest levels, although the differences were not great. These data indicate that consistency should be applied in selecting the part of kelp (and the length) to be used as a bioindicator. While any part of Alaria could be collected for some metals, for arsenic, cadmium, chromium, and manganese a conversion should be made among parts. In the Aleutians the holdfast can be perennial while the blade, whipped to pieces by winter wave action, is regrown each year. Thus the holdfast may be used for longer-term exposure for arsenic, cadmium, chromium and manganese, while the blade can be used for short-term exposure for all metals. Cadmium, lead and selenium were at levels that suggest that predators, including people, may be at risk from consuming Alaria. More attention should be devoted to heavy metal levels in kelp and other algae from Adak, particularly where they may play a role in a subsistence diets.  相似文献   

18.
Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples.  相似文献   

19.
As it is often difficult to obtain sufficient numbers of measurements to adequately characterise exposure levels, occupational exposure models may be useful tools in the exposure assessment process. This study aims to refine and validate the inhalable dust algorithm of the Advanced REACH Tool (ART) to predict airborne exposure of workers in the pharmaceutical industry. The ART was refined to reflect pharmaceutical situations. Largely task based workplace exposure data (n = 192) were collated from a multinational pharmaceutical company with exposure levels ranging from 5 × 10(-5) to 12 mg m(-3). Bias, relative bias and uncertainty around geometric mean exposure estimates were calculated for 16 exposure scenarios. For 12 of the 16 scenarios the ART geometric mean exposure estimates were lower than measured exposure levels with on average, a one-third underestimation of exposure (relative bias -32%). For 75% of the scenarios the exposure estimates were, within the 90% uncertainty factor of 4.4, as reported for the original calibration study, which may indicate more uncertainty in the ART estimates in this industry. While the uncertainty was higher than expected this is likely due to the limited number of measurements per scenario, which were largely derived from single premises.  相似文献   

20.
Little is known about the physicochemical properties of beryllium aerosols associated with increased risk of beryllium sensitization and chronic beryllium disease (CBD). Such information is needed to evaluate whether airborne mass of beryllium is the appropriate metric of exposure or alternatively to provide a scientific basis for using information on particle size, surface area, and chemistry to support an improved exposure limit based on bioavailability through the inhalation and dermal routes of exposure. Thus, we used a suite of analytical techniques to characterize aerodynamically size-fractionated beryllium particles and powders that have been associated in epidemiological studies with higher prevalence of CBD. Aerosol particles were sampled from the ventilation systems of production lines for powders of beryllium metal and beryllium oxide and for ingots of copper-beryllium alloy. End product powders from the metal and oxide production lines were also collected.Particles released during production of beryllium metal were found to be complex, having heterogeneous composition, including reactive species such as fluorine. Powders from beryllium metal production were of high purity with only a minor component of beryllium oxide. Both particles and powders from oxide production were high-purity oxide. Particles released during production of copper-beryllium alloy were heterogeneous, being predominantly copper oxides. Thus, all particles and powders contain at least some beryllium in the form of beryllium oxide.These data justify efforts to thoroughly characterize beryllium aerosol properties when performing exposure assessments. The data also suggest that differences in particle chemical composition, size, number, and surface area may influence bioavailability of beryllium and contribute to risk of CBD. However, a scientific basis does not yet exist to replace mass as the current metric of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号