首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The objectives of this study were to compare changes in atmospheric deposition rates for water soluble Zn, Cu and Mn associated with a doubling of the generating capacity of a fossilfuel power plant located in southern Maryland with concentrations of extractable metals in soils and In corn and soybean foliage.

Three atmospheric deposition samples were collected monthly during each summer from 12 research and monitoring sites located 1.6, 4.8 and 9.6 km distances from the Chalk Point Generating Station for two years before and after the June 1975 expansion of generation capacity from 660 to 1320 MW. Crop leaf samples were collected at flowering, and 0-15 cm depth soil samples were collected from research plots each May.

Averaged over monitoring sites and plant operational periods, respectively, significant decreases were found in atmospheric deposition rates for Zn and Mn from pre- to post-plant expansion and with increased distances. The Cu deposition rates remained unchanged from pre- to post-expansion; however, a trend for decreased rates with distance was observed.

Significant differences were found in the levels of soil extractable Zn, Cu and Mn among the 12 sites and with distance from the power plant. Also, combined over sites, significantly higher levels of extractable Zn and Mn were found during post-expansion which were attributed to general increases in soil acidity found in all soil research sites.

Significant increases in foliar Cu and significant decreases in foliar Mn concentrations were found in both crops from pre- to post-expansion. Leaf Zn concentrations declined in soybeans but remained unchanged in corn after plant expansion. Leaf Mn levels were highest in both crops at 1.6 km compared to more distance sites; however, foliar Zn and Cu concentrations In both crops were similar across distances from the power plant.

The increase in soil extractable Zn and Mn associated with the decreases in soil pH were typically 100X larger than the recorded decreases in water soluble Zn and Mn deposition associated with power plant expansion. The observed changes in rates of metal deposition would be expected to have only minimal effects on the metal nutrition of the crops; however, the quantities of Zn and Cu being deposited would likely prevent deficiencies from occurring on the Atlantic Coastal Plain soils.  相似文献   

2.
The accumulation of Cu and Ni in successive life stages of the gypsy moth (Lymantria dispar), feces, and foliage near an ore smelter at Sudbury, Ontario and a control site was investigated. Higher concentrations of Cu and Ni were found in all larval stages collected at Sudbury than in those from the control site indicating that elevated levels of these metals in the Sudbury environment is an important factor influencing body burdens. These differences were associated with higher metal concentrations in the foliage of host trees from this site. However, differences between sites became less significant for pupae and adult stages. At the Sudbury site, concentrations of Cu (microg g(-1) dry wt) decreased in successive instars and then increased in tissues of pupae and adults. In contrast, Cu content (microg/individual) increased during larval development and then decreased in pupae and adults. The pattern of Ni concentration and content in larvae from the Sudbury site was similar to that of Cu. Patterns of Cu and Ni concentration and content throughout the life stages are explained by changes in weight resulting in a dilution effect in early stages, and a concentrating effect in later stages. Differences in Cu and Ni concentration and content between Sudbury and control populations became less significant following the pupal stage suggesting metal elimination with the exuviae and meconium. This study also illustrates the importance of sampling all stages in an insect's development when measuring accumulation of metals. Fecal and foliar concentrations of Cu and Ni from Sudbury were not significantly different suggesting that metal assimilation is low. Even though gypsy moths from Sudbury contain elevated levels of Cu and Ni, metal burdens in their tissues do not represent a significant route through the food chain. However, the conversion of foliage with high metal content to feces implies that other ecosystem consequences should be investigated.  相似文献   

3.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

4.
Uptake of Al, Cu, Fe, Mn, Ni, Ca, K, Mg, P, and S in Empetrum nigrum L. ssp. hermaphroditum Hagerup and Vaccinium myrtillus L. from Ni, Cu and SO2 contaminated sites in S?r-Varanger, northern Norway, were investigated. The primary objective was to study the effect of airborne heavy metal pollution on foliar element composition of these two dwarf shrubs. Ni distribution and availability in soils clearly indicate atmospheric deposition of Ni particulates in S?r-Varanger. Foliar Ni concentrations in E. hermaphroditum and V. myrtillus increased in relation to plant available Ni in corresponding soils. Leaves of E. hermaphroditum generally contained higher concentrations of Ni than leaves of V. myrtillus. Emissions influenced some features of leaf elemental composition of the two species in very different ways. In leaves of V. myrtillus, S increased in proportion to Ni and Cu, while levels of Mn decreased. In leaves of E. hermaphroditum, Fe increased in proportion to Ni and Cu, while levels of Ca decreased.  相似文献   

5.
The nutritional status of needles from Sitka spruce, Norway spruce and Scots pine in a total of 108 stands was assessed. There was little evidence of nutritional deficiency, although potassium levels were frequently quite low. Analysis of some heavy metals (lead and copper) failed to reveal any likely toxicity problems. Sulphur, nitrogen and iron levels in/on the foliage were all related to various measures of sulphur and nitrogen pollution, determined using improved deposition models that take into account cloud deposition and the seeder-feeder mechanism. The analysis strongly suggested that direct air pollution has a greater effect on sulphur, nitrogen and iron foliar analyses than indirect pollution (wet deposition). The relationships were identified for levels of pollution that were generally lower than those seen in traditional gradient studies.  相似文献   

6.
The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.  相似文献   

7.
Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load.  相似文献   

8.
Degree of heavy metal pollution in soil caused by a former Ferromanganese Plant (FMP) and aluminium factory was investigated and the potential of metal mobility and bioavailability was estimated. Elemental concentrations in soil, vegetation and soil extracts were determined by EDXRF. In the nearest vicinity of the factory, soil concentrations ranged as follows: Mn 12,700-342,000 ppm, Zn 200-1090, Cu 50-440, Ni 60-330, V 60-410 and Pb 24-320 ppm. Significantly higher concentrations of V, Ni, Cu, Zn and Pb compared with control samples were also found in the soil samples taken in the vicinity of aluminium plant.  相似文献   

9.
Chen TB  Zheng YM  Lei M  Huang ZC  Wu HT  Chen H  Fan KK  Yu K  Wu X  Tian QZ 《Chemosphere》2005,60(4):542-551
Assessing the concentration of potentially harmful heavy metals in the soil of urban parks is imperative in order to evaluate the potential risks to residents and tourists. To date, little research on soil pollution in China's urban parks has been conducted. To identify the concentrations and sources of heavy metals, and to assess the soil environmental quality, samples were collected from 30 urban parks located in the city of Beijing. Subsequently, the concentrations of Cu, Ni, Pb and Zn in the samples were analyzed. The investigation revealed that the accumulations of Cu and Pb were readily apparent in the soils. The integrated pollution index (IPI) of these four metals ranged from 0.97 to 9.21, with the highest IPI in the densely populated historic center district (HCD). Using multivariate statistic approaches (principal components analysis and hierarchical cluster analysis), two factors controlling the heavy metal variability were obtained, which accounted for nearly 80% of the total variance. Nickel and Zn levels were controlled by parent material in the soils, whereas Cu, Pb and, in part, Zn were accounted for mainly by anthropogenic activities. The findings presented here indicate that the location and the age of the park are important factors in determining the extent of heavy metal, particularly Cu and Pb, pollution. In addition, the accumulation of Zn did not appear to reach pollution levels, and no obvious pollution by Ni was observed in the soils of the parks in Beijing.  相似文献   

10.
11.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

12.
Mature grafts of five Sitka spruce (Picea sitchensis (Bong.) Carr.) clones were exposed to simulated acid mist comprising an equimolar mixture of H(2)SO(4) and NH(4)NO(3) (1.6 and 0.01 mol m(-3)) at pH 2.5 and 5.0. Mist was applied to potted plants growing in open-top chambers on consecutive days, four times a week, at a precipitation equivalent of 1 mm per day. The total exposure to polluted mist was equivalent to three times that measured at an upland forest in SE Scotland. The aim of the experiment was to characterize the response of juvenile foliage produced by physiologically mature grafts (on seedling root stock) and compare it with the behaviour of juvenile foliage on seedlings. Development of visible foliar damage was followed through the growing season. Measurements of needle length, diameter, weight, surface area, surface was weight and wettability were made on current year needles to determine whether particular foliar characteristics increased susceptibility to injury. Significant amounts (> 10%) of visible needle damage was observed on only one of the five clones. Damage was most severe on the clone with the most horizontal branch and needle habit, but over the five clones there was no relationship between angle of branch display and damage. Likewise no combination of needle characteristics (length, width, area, amount of wax) was indicative of potential susceptibility. A comparison with previous acid misting experiments using seedlings suggests that juvenile foliage on physiologically mature trees is equally susceptible to visible injury as juvenile seedling foliage. Data of budburst differed among clones, and in this experiment exerted the over-riding influence on development of injury symptoms. Foliage exposed to a combination of strong acidity and high sulphate concentrations over the few weeks immediately following budburst suffered most visible injury. The absence of significant amounts of visible damage in UK forests probably reflects the general low susceptibility to visible injury of Sitka spruce exposed to acid mist.  相似文献   

13.
The relationships between chemical composition of birch foliage, individual performance and population density of both solitary and gregarious species of Eriocrania leafminers (Lepidoptera: Eriocraniidae) were studied in the vicinity of the Harjavalta copper-nickel smelter, southwestern Finland. The contents of heavy metals (Cu, Ni, Fe and Zn) in birch foliage exponentially decreased with the distance from the factory whereas the content of manganese showed the opposite trend. Performance parameters of Eriocrania miners were correlated neither with the distance from the pollution source nor with the foliar content of heavy metals. However, larval masses of both solitary and gregarious species were highest at the zone of moderate pollution. The levels of total nitrogen and total carbon and the carbon: nitrogen ratio in birch leaves showed no clear patterns in relation to distance from the factory. Feeding efficiency of solitary larvae increased with higher foliar nitrogen content but decreased when the carbon: nitrogen ratio was high. Survival of solitary Eriocrania species was negatively correlated with total leaf carbon content. However, the population density of solitary miners showed a negative correlation with total foliar nitrogen and a positive correlation with the carbon:nitrogen ratio. Performance of the gregarious E. haworthi was not correlated with the chemical composition of birch leaves, whereas population density was highest close to the factory complex and correlated positively with the levels of copper and nickel in birch leaves. Consequently, pollution-induced changes in measured host plant chemicals were unlikely to affect population densities of Eriocrania miners via altered larval performance.  相似文献   

14.
To assess the impacts of the decline in sulphur (S) deposition over the past 20 years in Ontario, soil chemistry and sugar maple (Acer saccharum Marsh) foliar chemistry were measured at 17 sites in south and central Ontario in 2005 and compared with archived samples collected in 1986. Foliar S concentrations were lower in 2005, reflecting the decline in S deposition whereas foliar N remained unchanged, reflecting the lack of change in N deposition in Ontario. Mineral soil pH, exchangeable base cations were lower in 2005 whereas total S, N and cation exchange capacity (CEC) were unchanged. Foliar concentrations of Ca were positively related to soil Ca levels in the A-horizon and were lower in 2005. Despite evidence of increasing soil acidity and losses of calcium, foliar base cation concentrations at most sites were adequate for sugar maple and forest health in terms of canopy appearance (Decline Index) improved.  相似文献   

15.
Studies were done on the effects of elevated soil concentrations of copper (Cu) and (Ni) on foliar carbohydrates and phenolics in Scots pine (Pinus sylvestris L.). Four year-old seedlings were planted in pots filled with metal-treated mineral forest soil in early June. The experimental design included all combinations of four levels of Cu (0, 25, 40 and 50 mg kg(-1) soil dw) and Ni (0, 5, 15 and 25 mg kg(-1) soil dw). Current year needles were sampled for soluble sugar, starch and phenolics at the end of September. Ni increased sucrose concentration in the needles, indicating disturbances in carbohydrate metabolism. Trees exposed to Ni had higher concentrations of condensed tannins compared with controls. In contrast, concentrations of several other phenolic compounds decreased when seedlings were exposed to high levels of Cu or to a combination of Ni and Cu. The results suggest that concentrations of phenolics in Scots pine needles vary in their responses to Ni and Cu in the forest soil.  相似文献   

16.
Concentrations of Al, B, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S and Zn in the foliage of white fir (Abies alba), Norway spruce (Picea abies) and common beech (Fagus sylvatica) from 25 sites of the Carpathian Mts. forests (Czech Republic, Poland, Romania, Slovakia and Ukraine) are discussed in a context of their limit values. S/N ratio was different from optimum in 90% of localities when compared with the European limit values. Likewise we found increase of Fe and Cu concentrations compared with their background levels in 100% of locations. Mn concentrations were increased in 76% of localities. Mn mobilization values indicate the disturbance of physiological balance leading to the change of the ratio with Fe. SEM-investigation of foliage waxes from 25 sites in the Carpathian Mts. showed, that there is a statistically significant difference in mean wax quality. Epistomatal waxes were damaged as indicated by increased development of net and amorphous waxes. The most damaged stomata in spruce needles were from Yablunitsa, Synevir and Brenna; in fir needles from Stoliky, and in beech leaves from Malá Fatra, Morské Oko and Beregomet. Spruce needles in the Carpathian Mts. had more damaged stomata than fir needles and beech leaves. Spruce seems to be the most sensitive tree species to environmental stresses including air pollution in forests of the Carpathian Mountains. Foliage surfaces of three forest tree species contained Al, Si, Ca, Fe, Mg, K, Cl, Mn, Na, Ni and Ti in all studied localities. Presence of nutrition elements (Ca, Fe, Mg, K and Mn) on foliage surface hinders opening and closing stomata and it is not physiologically usable for tree species.  相似文献   

17.
雷州半岛土壤重金属分布特征及其污染评价   总被引:5,自引:1,他引:5  
在雷州半岛采集了106个土壤表层样品,分析了其中8种重金属元素(Cu、Pb、Zn、Cr、Ni、Cd、Hg和As)的全量.结果表明,雷州半岛土壤重金属污染由高到低排序为Ni>Cr>Hg>Cu>Zn>Cd>As>Pb,Zn、Cd、As和Pb质量浓度均没有超标,Hg和Cu质量浓度超标率亦不高,但Ni和Cr平均质量浓度达49.81、87.13 mg/kg,高于国内外其他对照区域,超标率分别为25.47%和24.53%;重金属元素在雷州半岛各土壤利用类型中分布规律不明显,按4种主要土壤利用类型受重金属污染程度大小排序为甘蔗地>果园土>水田>菜地;雷州半岛土壤综合污染指数总平均为0.970,土壤总体上尚清洁,重金属污染处于警戒水平;雷州半岛各区域中,徐闻、雷州两地土壤重金属质量浓度明显高于其他地区,其主要原因是徐闻、雷州两地成土母质主要为玄武岩,造成土壤Cr、Ni及其他重金属背景值较高.  相似文献   

18.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage. Symptoms of forest decline as observed in the field were not reproduced, and there was no evidence of direct toxicity. Treatments did, however, have significant effects on tree nutrition. Both NH(+)(4) and NO(-)(3) treatment applied to the foliage lowered foliar K concentrations. NH(+)(4) to a greater extent. Soil-applied NH(+)(4) reduced foliar Mg concentrations and increased foliar Al and Fe. Soil-applied NO(-)(3) significantly reduced foliar P concentrations, and at high doses prevented the alleviation of P deficiency by fertiliser. These effects could be important in some field situations. Ammonium deposition is predicted to be more damaging than nitrate deposition, although the latter may be critical for forests where P status is marginal, such as in parts of the British uplands.  相似文献   

19.
Concentrations of potential pollutant elements Na, Cl, and S were investigated in needles of Pinus canariensis grown at 55 field plots in Tenerife. Microelement concentrations (including heavy metals) were measured at a subset of 18 plots. Na and Cl concentrations were high at low elevations (up to 8 mg g(-1) Cl and 5.5 mg g(-1) Na). Na/Cl ratio close to standard seawater indicated sea spray influence up to 1200 m a.s.l. Only at few plots, sulphur concentrations indicated possible pollutant impact. Cluster and correlation analyses identified a related group of V, As, Cr, Fe, Mo, Ni, Cu, Pb, and Al, possibly related to traffic exhaust aggregated with soil particles. Mainly north-eastern, lower elevated plots were exposed to those immissions, but metal concentrations were generally low compared to data from other studies. In conclusion, seawater and soil particles explained most of the element distribution pattern in pine needles in Tenerife, but strong indications for some effect of local sources of air pollutants were detected.  相似文献   

20.
Six potato cultivars were grown to maturity in field plots in New Brunswick, New Jersey, according to standard commercial practices over a 5-year period. One-half of the plots were given a periodic soil drench of an antioxidant (EDU) which has the capacity to protect foliage against ozone toxicity. Based upon visible foliar injury and total tuber yield, the cultivars Norland and Norchip proved significantly more sensitive to ambient ozone pollution than Green Mountain, Irish Cobbler, Belrus or Superior. When foliar injury was less than 20%, no impact on tuber yield was detected. However, when 75% of the foliage exhibited O(3) toxicity symptoms, tuber yield was reduced 25% and 31%, respectively, in 'Norland' and 'Norchip'. A review of results from studies in the US and Canada utilizing different assessment methodologies provides evidence that ambient ozone causes significant tuber yield reduction in sensitive white potato genotypes when foliar injury exceeds 20 to 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号