首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Current regulatory risk assessment procedures only assess the impact of antifouling paint biocides that are released through leaching from a painted surface. Hull cleaning activities can lead to particles of antifouling paint containing biocides to enter the environment. Comparative pseudo-first order anaerobic degradation rate constants and half-lives were determined for a selection of common antifouling paint booster biocides, their degradation products, and associated with paint particles. Anaerobic half-lives of <0.5 days were calculated for chlorothalonil, dichlofluanid, and SeaNine 211, between 1 and 3 days for DCPMU and DCPU, between 14 and 35 days for diuron and CPDU, and over 226 days for GS26575 and Irgarol 1051. Increased persistence was observed when the compounds were introduced to sediments associated with antifouling paint particles. When present as antifouling paint particles, an increased half-life of 9.9 days for SeaNine 211 and 1.4 days was calculated for dichlofluanid, no significant degradation was observed for diuron. It is suspected that this is due to much of the biocide being initially bound within the matrix of the paint particle that is slowly released through dissolution processes into the sediment pore water prior to degradation. The release of booster biocides associated with paint particles into marinas has the potential to lead to their accumulation unless activities such as hull cleaning are strictly regulated.  相似文献   

2.
Okamura H 《Chemosphere》2002,48(1):43-50
The antifouling compound Irgarol 1051 and its degradation product M1 (also known as GS26575), along with another antifouling compound Diuron, have recently been found in Japanese coastal waters. This study was undertaken to find the origin of these chemicals and investigate their aquatic fate. Five glass plates, each coated with 1 g of antifouling paint containing Irgarol and Diuron, were submerged in 250 ml of five different test waters and the plates removed after several months. The aqueous solutions were divided into two groups: one exposed to natural sunlight, and the other kept in the dark as a control. Irgarol and Diuron were detected in all aqueous solutions, suggesting leaching from antifouling paints is the origin of these antifouling biocides found in Japanese coastal waters. Under sunlight conditions, Irgarol underwent a rapid degradation to produce M1, which remained even after Irgarol had disappeared from the system. These compounds were persistent in any aqueous solutions tested under dark conditions, indicating high stability to hydrolysis. Diuron and M1 were more persistent than Irgarol under sunlight irradiation. Since these compounds have high herbicidal activities, their ultimate impact on aquatic ecosystems is closely related to their aquatic fate.  相似文献   

3.
The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4–200 mg L?1) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca.  相似文献   

4.
Sargent CJ  Bowman JC  Zhou JL 《Chemosphere》2000,41(11):1755-1760
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an antifouling agent used in paint formulations that are applied to the hulls of ships. A survey was carried out at Conwy Marina in North Wales to determine the levels of the herbicide over a period of three months. Liquid/liquid extraction was used to concentrate the analyte for quantitative analysis using gas chromatography/mass spectrometry (GC/MS) in the selected ion monitoring (SIM) mode. The concentrations of Irgarol 1051 in Conwy marina ranged from 7 to 543 ng/l, similar to the levels found in many other marinas, estuaries and ports in England, although much lower than those in C?te d'Azur, France. The concentrations of Irgarol 1051 were not found to be influenced by salinity, pH or temperature, although there is a strong correlation between the average concentrations of Irgarol 1051 and the density of boating activity. At the levels found in the marina, it is possible that non-target photosynthetic inhibition could occur.  相似文献   

5.
Okamura H  Sugiyama Y 《Chemosphere》2004,57(7):739-743
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) is a herbicide analogue that is added to antifouling agents used on ships. Our former study on its degradation in sunlight suggested that unknown photosensitizers in natural waters accelerated the photodegradation to the degradation product, M1. In this study, the photodegradation of Irgarol in water was investigated in the presence of some photosensitizers. Test water containing Irgarol or M1, with or without photosensitizers, was irradiated with light from a UV-A fluorescent lamp for 48h. The concentrations of Irgarol and M1 in the test water were determined by HPLC after solid-phase extraction. M1 was more stable than Irgarol when irradiated in the presence of photosensitizers such as acetone, benzophenone, tryptophan, and rose bengal. Hydrogen peroxide (HP) accelerated the photodegradation of Irgarol, and the product M1 was degraded in the presence of more than 100mgl(-1) HP after 10h. Natural humic substances (NHS) also accelerated the photodegradation of Irgarol, but in this case, the product M1 persisted even when Irgarol was completely degraded. Photosensitized degradation of Irgarol by NHS may result in the accumulation of M1 in aquatic environments.  相似文献   

6.
The antifouling herbicide Irgarol 1051 has been detected in recent years in numerous estuaries, marinas, harbors and coastal areas, and in some harbors on Lake Geneva, but so far only a few studies have investigated the ecotoxicological effects of this compound on microalgae. The purpose of this study was to assess the ecotoxicological impact of Irgarol 1051 on the algal communities of Lake Geneva, and to compare its phytotoxicity to that of the common triazine herbicide, atrazine. We investigated the response of phytoplanktonic and periphytonic algal communities and single-species isolates collected from the lake, to the PS II inhibitor Irgarol 1051 (growth, proxy of photosynthetic activity and community structure). A short-term bioassay was developed based on in vivo fluorescence, together with nanocosm experiments with natural algal communities, and single-species tests on algal strains isolated from the lake. The toxicity of Irgarol 1051 towards periphyton and phytoplankton was shown to be higher than that of atrazine. Indications of the tolerance induced by this triazine in the algal communities of Lake Geneva, suggests that even at the levels of contamination reported in some parts of the lake, Irgarol 1051 is already exerting selection pressure. Information about sensitivities, selection and tolerance from laboratory experiments are used to explain the observations in natural microalgal communities from the lake.  相似文献   

7.
Ogawa N  Okamura H  Hirai H  Nishida T 《Chemosphere》2004,55(3):487-491
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051.  相似文献   

8.
Dichlofluanid (N-dichlorofluoromethylthio-N'-dimethyl-N-phenylsulphamide) is used as booster biocide in antifouling paints. The occurrence of dichlofluanid and its metabolite DMSA (N'-dimethyl-N-phenyl-sulphamide) was monitored in seawater and marine sediment from three Greek marinas. Seawater and sediment samples were collected at three representative positions and one suspected hotspot in each marina and shipped to the laboratory for chemical analysis. As part of the project, an analytical method had been developed and validated. Furthermore, some additional experiments were carried out to investigate the potential contribution of paint particle bound dichlofluanid on the total concentration in the sediment. As expected, given its known high hydrolytic degradation rate, no detectable concentrations of dichlofluanid were measured in any of the seawater samples. DMSA was detected in seawater samples at very low concentrations varying from <3 ng l(-1) (LOD) to 36 ng l(-1). During method validation, it had already been demonstrated that dichlofluanid is unstable in sediment and can therefore only be determined as its metabolite DMSA. In a separate experiment, in which marine sediment was spiked with artificial paint particles containing dichlofluanid and then analysed according to the validated method, it was demonstrated that if there is any dichlofluanid originating from paint particles, this would be determined as DMSA. No DMSA was detected in any of the sediment samples. It could therefore be concluded that there were no significant concentrations of dichlofluanid in the sediment samples.  相似文献   

9.
A 2-year study was implemented to characterize the contamination of estuarine continuums in the Bay of Vilaine area (NW Atlantic Coast, Southern Brittany, France) by 30 pesticide and biocide active substances and metabolites. Among these, 11 triazines (ametryn, atrazine, desethylatrazine, desethylterbuthylazine, desisopropyl atrazine, Irgarol 1051, prometryn, propazine, simazine, terbuthylazine, and terbutryn), 10 phenylureas (chlortoluron, diuron, 1-(3,4-dichlorophenyl)-3-methylurea, fenuron, isoproturon, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl)-urea, linuron, metoxuron, and monuron), and 4 chloroacetanilides (acetochlor, alachlor, metolachlor, and metazachlor) were detected at least once. The objectives were to assess the corresponding risk for aquatic primary producers and to provide exposure information for connected studies on the responses of biological parameters in invertebrate sentinel species. The risk associated with contaminants was assessed using risk quotients based on the comparison of measured concentrations with original species sensitivity distribution-derived hazardous concentration values. For EU Water Framework Directive priority substances, results of monitoring were also compared with regulatory Environmental Quality Standards. The highest residue concentrations and risks for primary producers were recorded for diuron and Irgarol 1051 in Arzal reservoir, close to a marina. Diuron was present during almost the all survey periods, whereas Irgarol 1051 exhibited a clear seasonal pattern, with highest concentrations recorded in June and July. These results suggest that the use of antifouling biocides is responsible for a major part of the contamination of the lower part of the Vilaine River course for Irgarol 1051. For diuron, agricultural sources may also be involved. The presence of isoproturon and chloroacetanilide herbicides on some dates indicated a significant contribution of the use of plant protection products in agriculture to the contamination of Vilaine River. Concentration levels and associated risk were always lower in estuarine sites than in the reservoir, suggesting that Arzal dam reduces downstream transfer of contaminants and favors their degradation in the freshwater part of the estuary. Results of the additional monitoring of two tidal streams located downstream of Arzal dam suggested that, although some compounds may be transferred to the estuary, their impact was probably very low. Dilution by marine water associated with tidal current was also a major factor of concentration reduction. It is concluded that the highest risks associated to herbicides and booster biocides concerned the freshwater part of the estuary and that its brackish/saltwater part was exposed to a moderate risk, although some substances may sometimes exhibit high concentration but mainly at low tide and on an irregular basis.  相似文献   

10.
Kitada Y  Kawahata H  Suzuki A  Oomori T 《Chemosphere》2008,71(11):2082-2090
To investigate the deteriorating health of coral reefs in Okinawa, Japan, natural sediment samples were analyzed for diuron, Irgarol 1051, chlorpyrifos, and bisphenol A (BPA) which are hazardous to corals. Samples were analyzed by solid-phase extraction (SPE) followed by high-performance liquid chromatography with tandem mass spectrometry (LC–MS–MS). Although diuron and chlorpyrifos usage is only well recorded for farms and not for cities, these chemicals were detected in both rural and urban areas. Additionally, diuron concentration in urban areas was in some cases higher than in rural areas, which might be caused by greater consumption of these chemicals in home gardens in city areas. Irgarol 1051 was detected in downstream river areas, which are situated far from the source sites such as pier or fishery harbor (0.6–3.2 km). This result suggested that Irgarol 1051 could be transported from the river mouths to the sampling sites during flood tides. High BPA concentrations were associated with urban areas (<1.2–22.0 μg kg−1), while low concentrations were associated with rural areas (nd–6.8 μg kg−1). The river sediments under study are delivered to coral reefs in large quantity through runoff caused by typhoons and other heavy rains. The highly hazardous chemicals are carried into coral reefs on these sediments. Therefore, these hazardous chemical substances may already be influencing the coral reefs.  相似文献   

11.
A simple, rapid toxicity test was developed using the suspension-cultured fish cell line CHSE-sp derived from chinook salmon Oncorhynchus tshawytscha embryos in order to assess the toxicity of new marine antifouling compounds. The compounds tested were copper pyrithione, Diuron, Irgarol 1051, KH101, Sea-Nine 211, and zinc pyrithione, all of which have been nominated in Japan as possible replacements for organotin compounds. The in vitro acute toxicity (24-h EC50) of the six compounds to these fish cells was evaluated using the dye Alamar Blue to determine cell viability, and then correlated with the results of in vivo chronic toxicities (28-day LC50) to juvenile rainbow trout Oncorhynchus mykiss. The suspension-cultured fish cells were found to be suitable for the screening of such chemicals before performing an in vivo test. The toxicities of the test compounds obtained from both tests, shown in decreasing order, were as follows: copper pyrithione > zinc pyrithione > KH101 > or = Sea-Nine 211 > Diuron > Irgarol 1051. The herbicides Diuron and Irgarol 1051 showed the least toxicity, while the pyrithiones had the greatest toxicity.  相似文献   

12.
Lambert SJ  Thomas KV  Davy AJ 《Chemosphere》2006,63(5):734-743
Antifouling paints are used to reduce the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of a biocide. Two 'booster' biocides in common use are the triazine herbicide Irgarol 1051 (N-2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and diuron (1-(3,4-dichlorophenyl)-3,3-dimethylurea), which are designed to inhibit algal photosynthesis. Previous research has been directed at the effects of these compounds in marine and estuarine environments. In 2001 we sampled the main rivers and shallow freshwater lakes (Broads) of East Anglia UK for Irgarol 1051, its metabolite GS26575 (2-methylamino-4-tert-butylamino-6-amino-s-triazine) and diuron in order to establish the baseline environmental concentrations of these compounds in freshwater systems of eastern UK and to investigate their possible effects on aquatic plants. Irgarol 1051, GS26575 and diuron were found in water samples collected from 21 locations. The highest concentrations were found in the Norfolk and Suffolk Broads in May. The rivers Great Ouse, Wissey, Bure and Yare also contained all three compounds, as did the Great Ouse Cut-off Channel. The toxicity of these biocides to three macrophyte species (Apium nodiflorum, Chara vulgaris, and Myriophyllum spicatum) was investigated. Deleterious effects on relative growth rate, the maximum quantum efficiency (Fv/Fm) of photosystem II and, for Apium, root mass production were found. C. vulgaris was generally most sensitive; growth, especially of roots, was strongly affected in A. nodiflorum; growth rate of M. spicatum was sensitive to diuron. No observed effect concentrations (NOEC) were interpolated using standard toxicological analysis. These were compared with measured environmental concentrations (MEC) to determine the ranges of risk quotients (MEC/NOEC). Both Irgarol 1051 and diuron represented significant risks to A. nodiflorum and C. vulgaris in this area.  相似文献   

13.
Although now well embedded within many risk-based sediment quality guideline (SQG) frameworks, contaminant bioavailability is still often overlooked in assessment and management of contaminated sediments. To optimise management limits for metal contaminated sediments, we assess the appropriateness of a range methods for modifying SQGs based on bioavailability considerations. The impairment of reproduction of the amphipod, Melita plumulosa, and harpacticoid copepod, Nitocra spinipes, was assessed for sediments contaminated with copper from antifouling paint, located below aquaculture cages. The measurement of dilute acid-extractable copper (AE-Cu) was found to provide the most useful means for monitoring the risks posed by sediment copper and setting management limits. Acid-volatile sulfide was found to be ineffective as a SQG-modifying factor as these organisms live mostly at the more oxidised sediment water interface. SQGs normalised to %-silt/organic carbon were effective, but the benefits gained were too small to justify this approach. The effectiveness of SQGs based on AE-Cu was attributed to a small portion of the total copper being present in potentially bioavailable forms (typically <10% of the total). Much of the non-bioavailable form of copper was likely present as paint flakes in the form of copper (I) oxide, the active ingredient of the antifoulant formulation. While the concentrations of paint-associated copper are very high in some sediments, as the transformation of this form of copper to AE-Cu appears slow, monitoring and management limits should assess the more bioavailable AE-Cu forms, and further efforts be made to limit the release of paint particles into the environment.  相似文献   

14.
Xin J  Liu X  Liu W  Jiang L  Wang J  Niu J 《Chemosphere》2011,84(3):342-347
This study provides the first intensive investigation of Dichlorodiphenyltrichloroethanes (DDT) distribution in typical paint factories and shipyards in China where DDT containing antifouling paint were mass produced and used respectively. DDTs were analyzed in soil, sludge and sediment samples collected from three major paint factories and two shipyards. The results showed that the total DDTs concentrations detected in paint factory and shipyard sites ranged from 0.06 to 8387.24 mg kg−1. In comparison with paint factory sites, the shipyard sites were much more seriously contaminated. However, for both kinds of sites, the DDTs level was found to be largely affected by history and capacity of production and use of DDT containing antifouling paint. (DDE + DDD)/DDT ratios indicated that DDT containing antifouling paint could serve as important fresh input sources for DDTs. It can be seen that most samples in shipyards were in ranges where heavy contamination and potential ecological risk were identified.  相似文献   

15.
Antifouling paint booster biocide contamination in Greek marine sediments   总被引:1,自引:0,他引:1  
Organic booster biocides were recently introduced as alternatives to organotin compounds in antifouling products, after restrictions imposed on the use of tributyltin in 1987. In this study, the concentrations of three biocides commonly used as antifoulants, Irgarol 1051 (2-methylthio-4-tertiary-butylamino-6-cyclopropylamino-s-triazine), dichlofluanid (N-dichlorofluoromethylthio-N',N'-dimethyl-N-phenyl sulphamide) and chlorothalonil (2,4,5,6-tetrachloro isophthalonitrile) were determined in sediments from ports and marinas of Greece. Piraeus (Central port, Mikrolimano and Pasalimani marinas), Thessaloniki (Central port and marina), Patras (Central port and marina), Elefsina, Igoumenitsa, Aktio and Chalkida marinas were chosen as representative study sites for comparison with previous monitoring surveys of biocides in coastal sediments from other European countries. Samples were collected at the end of one boating season (October 1999), as well before and during the 2000 boating season. All the compounds monitored were detected at most of sites and seasonal dependence of biocide concentrations were found, with maxima during the period June-September, while the winter period (December-February) lower values were encountered. The concentrations levels ranged from 3 to 690 ng/g dw (dry weight). Highest levels of the biocides were found in marinas (690, 195 and 165 ng/g dw, for Irgarol, dichlofluanid and chlorothalonil respectively) while in ports lower concentrations were observed. Antifouling paints are implicated as the likely sources of biocides since agricultural applications possibly contributed for chlorothalonil and dichlofluanid inputs in a few sampling sites.  相似文献   

16.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

17.
The influence of different porewater salinities (up to 12 g/L) on the toxicity and bioaccumulation of copper, zinc and lead from metal-spiked sediments was assessed using the midge, Chironomus maddeni. Survival of the larvae was significantly reduced at a porewater salinity of 12 g/L, but no effects were observed at 4 or 8 g/L. Both growth and survival of C. maddeni were reduced after exposure to salt/metal spiked sediments as compared to those exposed to sediments spiked with metals or salt alone. Increased salinity resulted in increased bioaccumulation of copper and zinc, but decreased bioaccumulation of lead. The observed patterns of bioaccumulation were not entirely explained by the modelled free ion activities of the metals, indicating that factors such as osmotic stress, consumption of metal-contaminated sediments or metal interactions may have been important as well. These results highlight the need to consider the influence of existing or potential salinization when undertaking hazard assessments of freshwater systems impacted by contaminants such as trace metals.  相似文献   

18.
The desorption kinetics of hexachlorobenzene (HCB) in four freshly spiked artificial sediments were determined using a polymeric adsorbent Tenax-mediated desorption. The sediments included a standard sediment (SS) prepared as per Organisation for Economic Cooperation and Development 218 guidelines and three derived artificial sediments prepared by supplementing the SS sediment with various levels of black carbon (lamp black soot) and/or montmorillonite clay. The desorption kinetics exhibited biphasic behavior, i.e., a fast desorbing fraction followed by a slow desorbing fraction. The addition of either lamp black soot or montmorillonite clay resulted in the reduction of the fast desorbing fraction (Ffast) of HCB in three derived sediments compared with SS sediment. Both black carbon and montmorillonite clay treatment effects on the fast desorbing fraction were statistically significant for the four artificial sediments. The black carbon treatment (i.e., addition of 0.5% wt/wt lamp black soot) effect was an average reduction of Ffast by approximately 11%, whereas the montmorillonite treatment (i.e., addition of 15% wt/wt montmorillonite clay) effect was an average reduction of Ffast by approximately 17%. The presence of soot black carbon particles reduced the desorption rate of HCB in sediments since black carbon exhibits very high sorption capacity and extremely slow diffusion rate compared with those of the natural organic matter in sediment.  相似文献   

19.
Tributyltin (TBT) and dibutyltin (DBT) were analyzed in sediment samples collected from intertidal locations in Portland and Boothbay Harbor, Maine (USA) in 1990 and 1992. Surface sediment TBT concentrations ranged from 24 to 12 400 ng gm(-1) (dry wt basis). Sediments with the highest TBT concentrations were associated with shipyard hull washing/refinishing activities. Analysis of different layers in core samples found that butyltin concentrations decreased with depth at the Boothbay site and remained relatively constant with depth at the Portland site. Elutriate analysis showed that soluble TBT was released from a heavily contaminated sediment. The resulting TBT seawater concentration 1400 ng liter(-1) was < 0.03% of reported seawater solubilities of TBT and was only 0.14% of the total TBT in the sediment sample. This suggests that the TBT in the sediments analyzed is in a bound matrix form, such as paint particles, that releases the biocide slowly. The results indicate that there is a potential for future release of TBT from the resuspension of fine sediments at certain locations in Maine.  相似文献   

20.
Analytical procedures for the determination of nine organic booster biocides which are currently licensed for use in marine antifouling paints, and are thought likely to occur at concentrations in the ng 1−1 range in estuarine water samples, are reviewed. A robust multiresidue method for the determination of four compounds (chlorothalonil, dichlofluanid, diuron and Irgarol 1051) is suggested. A route for the development of a method for the analysis of zinc pyrithione is outlined, based on an extraction method and subsequent derivatisation prior to determination by HPLC with fluorescence detection. Methodology for Zineb, Kathon 5287, TCMS pyridine and TCMTB is less clearly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号