首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

2.
以市政污泥为原料,在300、400、500、600、700和800℃无氧气氛下,热解制备了污泥基生物炭。采用BET、SEM、XPS、FT-IR对不同热解温度下污泥炭进行了表征分析;研究了不同热解温度下污泥炭对污水中有机物的吸附效果和动力学;探究了热解温度对污泥炭微观调控下吸附实际水体中有机物的匹配机质。结果表明,随热解温度的升高,C—H、C—C结合比例降低,C=C、C—O=C比例升高,芳香化程度增加,且比表面积、孔容及表面粗超度均有所增加,1~2 nm微孔比例增多,介孔向微孔发展趋势逐渐明显。800℃热解温度条件下制备的污泥炭对二沉池出水中有机物的吸附效果优于其他温度下制备的污泥炭。吸附温度为298.15 K时,最大吸附容量为282.5 mg·g~(-1),且符合准二级吸附动力学。高温下制备的污泥炭对水体中腐殖酸和富里酸具有较强的吸附效能。这主要是由于表面丰富的含氧官能团、芳香键与腐殖酸和富里酸发生了氢键、化学键缔合作用和π-π共轭作用,同时污泥碳表面发达的孔隙结构和较大的比表面积也提供了更多的活性结合位点,促进了污染物的吸附。  相似文献   

3.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

4.
腐殖酸对生物炭吸附四环素的影响   总被引:1,自引:0,他引:1  
以猪粪为原料,分别在300℃和700℃条件下制备猪粪生物炭(以下简称生物炭)。采用静态吸附实验,研究生物炭对四环素的吸附性能以及腐殖酸对生物炭吸附四环素的影响。结果表明:生物炭对四环素的吸附过程符合准二级动力学方程(R~20.99)。Langmuir和Freundlich方程都能很好地描述等温吸附过程(R~20.96)。最大吸附量随着热解温度的升高而增加,700℃条件下制备的生物炭吸附量最大,达到7.96mg/g。溶液pH影响吸附过程,pH为3.5~7.5时,生物炭对四环素的平衡吸附量较大。腐殖酸能缩短吸附平衡时间,使其由36.0h提前至18.0h。随着溶液中腐殖酸浓度的增加,300℃条件下制备的生物炭对四环素的平衡吸附量表现出增加的趋势,而700℃条件下制备的生物炭对四环素的平衡吸附量表现出减少的趋势。  相似文献   

5.
热解污泥制备生物炭是一种污泥资源化利用的主要处置方式,不同的反应条件对制得生物炭的品质存在显著的差异。以乙酸钾为添加剂,对城市脱水污泥(含水率80%)进行低温热解制备生物炭,考察了乙酸钾添加量、热解温度、热解停留时间及升温速率对生物炭性质的影响。通过N2吸附脱附、SEM、FT-IR等手段对原料污泥及生物炭进行了表征,实验结果表明,乙酸钾具有一定的扩孔作用,生物炭表面粗糙度明显增加,比表面积增大,吸附性能显著提高。当乙酸钾添加量4%,热解温度350℃,热解停留时间120 min,升温速率3℃·min~(-1)时生物炭的亚甲基蓝吸附量和比表面积分别为90.45 mg·g~(-1)、31.402 m2·g~(-1)。  相似文献   

6.
炭化是污泥资资源化利用的重要途径。研究了污泥基生物炭对Cd的吸附过程,探讨了污泥基生物炭吸附重金属Cd的动力学和热力学特征。结果显示污泥基生物炭对Cd的吸附符合准二级动力学方程。Freundlich方程能较好的模拟吸附等温线。随着温度增加,吸附呈现逐渐增强趋势。吸附热力学结果显示35℃时吸附并非自发进行,随着温度增加,吸附转为吸热并自发进行。污泥基生物炭对Cd的吸附主要以化学吸附为主,同时存在多种机制共同作用。研究结果表明污泥基生物炭有作为重金属Cd污染废水修复剂的潜力。  相似文献   

7.
污泥和茶渣都是典型的固体废弃物。将污泥和茶渣制备成生物炭,采用响应面分析(RSM)的方法优化生物炭的制备过程,主要考察温度、茶渣污泥配比和停留时间的影响,以得率和碘值作为评价生物炭的指标。结果表明:影响污泥-茶渣生物炭得率和吸附碘值的因素次序是:制备温度配比停留时间,温度和时间的交互影响较为明显。生物炭制备优化的条件是:制备温度为300℃,配比为0.7,停留时间为1.8 h,模型预测的得率和碘值分别是54.47%和624.07 mg·g~(-1),而实际测定的得率和碘值分别(53.50±0.50)%和(605.72±8.62)mg·g~(-1),生物炭有作为吸附剂的潜力。可见,RSM方法用于优化污泥-茶渣生物炭的制备是可行和合适的。  相似文献   

8.
以芦苇秸秆生物炭为基体,制备了磁性水滑石/生物炭复合材料(Fe3O4-Mg/Al-LDH/BC)。考察不同pH、Fe3O4-Mg/Al-LDH/BC投加量、初始磷浓度、吸附时间以及反应温度对Fe3O4-Mg/Al-LDH/BC吸附磷的影响。结果表明:Fe3O4-Mg/AlLDH/BC对磷的吸附符合准二级动力学模型和Freundlich模型,吸附过程是自发的吸热反应。在最佳的实验条件下(Fe3O4-Mg/Al-LDH/BC投加量为5.0g/L,磷初始质量浓度为20 mg/L,pH为6.0,温度为30℃,吸附时间为120 min),Fe3O4-Mg/AlLDH/BC对磷的去除率可达99.24%,该材料是一种新型高效的磷吸附材料。  相似文献   

9.
采用花生壳和木屑为原材料分别在300、600℃限氧条件下热裂解制备4种生物炭,研究了其对阳离子型染料亚甲基蓝(MB)、阴离子型染料刚果红(CR)和重金属Pb(Ⅱ)的吸附等温线和吸附动力学效应以及生物炭上Pb(Ⅱ)的解吸再生效应。结果表明,相比Freundlich方程,生物炭对MB和Pb(Ⅱ)的吸附等温线更符合Langmuir方程。其中,生物炭对MB的吸附受到表面含氧官能团和平均孔径影响,对Pb(Ⅱ)的吸附机制以离子交换或共沉淀为主。相比Langmuir方程,生物炭对CR的吸附等温线更符合Freundlich方程,吸附机制主要以疏水作用为主。300℃热裂解花生壳制备的生物炭对MB吸附效果最好,最大吸附量达28.0 mg/g;600℃热裂解制备的生物炭对CR吸附效果最好;300、600℃热裂解花生壳制备的生物炭对Pb(Ⅱ)吸附效果均较好,最大吸附量分别为63.7、73.2 mg/g。生物炭对MB、CR和Pb(Ⅱ)的吸附基本在24 h内达到平衡,相比准一级动力学模型,吸附过程均更符合准二级动力学模型。0.1 mol/L盐酸能有效解吸4种生物炭吸附的Pb(Ⅱ)。生物炭的吸附效果和吸附机制与生物炭制备时的热裂解温度和原材料种类关系密切。  相似文献   

10.
生物炭对污染物的吸附是生物炭环境效应研究的重要环节,而生物炭中的自由基对有机污染物降解行为的影响还没有得到应有的关注。以水稻秸秆为原材料,研究不同热解温度下制备的生物炭对罗丹明B的吸附和降解,通过荧光光谱法分析生物炭-罗丹明B体系反应前后上清液荧光光谱特性的变化来表征其中的降解现象。结果表明,在350℃和500℃生物炭-罗丹明B反应体系中,其上清液荧光光谱明显发生蓝移现象,表明该体系中存在着明显的降解现象。通过对这2个体系反应后生物炭固体颗粒的萃取来对降解作用进行定量分析,降解作用在这2个体系中所占的比例分别为28%和30%。水稻秸秆生物质炭对罗丹明B具有较好的吸附效果,Freundlich方程可以较好地描述水稻秸秆生物质炭对水中罗丹明B的吸附行为,固液比在3∶1 000时生物炭最大吸附量为3.33 mg·g-1。这表明在水稻秸秆生物炭-罗丹明B反应体系中,不仅存在吸附作用,还伴随降解作用。  相似文献   

11.
热解温度和时间对生物干化污泥生物炭性质的影响   总被引:5,自引:0,他引:5  
污泥热解制备生物炭是一种很有潜力的污泥资源化处置方式,然而,生物炭产量和品质因污泥原料性质、热解条件(如热解温度、时间)的不同而存在显著差异。以生物干化污泥为主要研究对象,系统考察了热解温度及时间等热解因素对生物炭品质的影响。实验结果表明,随着热解温度的升高(300~700℃),热解时间的增加(2~4 h),生物炭产率均下降。低温热解(300℃)生物炭,偏酸性,而高温热解时(700℃)生物炭,偏碱性。生物炭N含量随着热解温度的升高、热解时间的增加而降低,而P、K及微量元素随着热解温度的升高,热解时间的增加而增加。DTPA浸提结果表明,高温热解明显降低了生物炭中微量元素的生物有效性。  相似文献   

12.
以乙酸钾为催化剂,采用外热式反应釜共热解制备污泥-花生壳生物炭,根据Box-Behnken中心组合实验设计原理,在单因素实验的基础上,以热解温度、花生壳添加量、催化剂添加量和热解时间为考察因素,以污泥-花生壳生物炭的碘吸附值为响应值,建立了考察因素和响应值之间的三次多项式模型。回归方程方差分析结果表明:花生壳添加量对生物炭碘吸附值的影响最显著;热解温度和热解时间、催化剂添加量和热解时间之间交互作用影响显著。调整后确定的最佳热解工艺条件为,热解温度375℃,花生壳添加量60%,催化剂添加量5%,热解时间66 min。在最优条件下,制备的生物炭碘吸附值为420.86 mg·g~(-1),比表面积(BET)为12.565 m~2·g~(-1),总孔容为0.028 28 cm~3·g~(-1),平均孔径为4.501 nm。  相似文献   

13.
污泥含炭吸附剂对挥发性有机废气吸附实验研究   总被引:1,自引:0,他引:1  
研究了污泥含炭吸附剂对挥发性有机污染物的吸附特性。结果表明,污泥含炭吸附剂对苯系物的吸附为典型的物理吸附,其吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;在吸附反应温度为20℃,气体流量为500 mL/m in(停留时间为0.424 s),甲苯浓度为2 700 mg/m3时,甲苯的饱和吸附容量为150.0 mg/g;同时,研究表明污泥含炭吸附剂对苯系物的饱和吸附容量和吸附强弱次序为二甲苯甲苯苯。结果表明污泥含炭吸附剂适合对中低浓度有机废气的吸附净化。  相似文献   

14.
柚子皮制备生物炭吸附苯酚的特性和动力学   总被引:2,自引:0,他引:2  
廉价的柚子皮作为原材料制备生物炭吸附剂对含苯酚废水进行吸附研究。扫描电镜结果表明,柚子皮制备的生物炭具有较好表面吸附空间结构,比表面积测定为261.69 m2/g。此外,能谱对柚子皮生物炭元素分析发现,生物炭主要含有C、O、P、K,这些是生物质特点。红外对柚子皮生物炭分析发现生物炭含有羟基、氨基、羰基、羧基、磷酸酯或者硫酸酯等活性基团,这些是吸附苯酚的特性官能团。在初始浓度为100 mg/L,投加量为3 g/L,中性pH,30℃条件下吸附30 min后柚子皮生物炭对苯酚的去除率达到76.4%。伪二级动力学方程能很好地拟合柚子皮生物炭对苯酚的吸附过程。同时,Langmiur和Freundlich等温方程在整个温度都能较好地拟合数据,在30℃时,Langmuir理论最大吸附容量可达到49.75 mg/g。通过实际废水应用实验,表明柚子皮生物炭是一种有潜力可用于高浓度含酚废水的处理的有效材料。  相似文献   

15.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

16.
椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附   总被引:2,自引:0,他引:2  
为了研究不同裂解温度制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附性能差异及其机理,并为制备高效吸附生物炭提供依据,采用Langmuir和Freundlich模型拟合分析了300、500和700℃3个裂解温度下制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的等温吸附曲线,使用元素分析仪、Boehm滴定法、扫描电子显微镜等研究了不同温度制备的生物炭的组成与理化性质。结果表明,Langmuir模型和Freundlich模型都能较好地拟合生物炭对这些重金属的吸附,提高生物炭的制备温度可增加其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量,同时降低其对As(Ⅲ)和Cr(Ⅵ)的最大吸附量;制炭温度升高引起的生物炭C含量、灰分含量、p H、CEC的升高和生物炭表面积增大是导致其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量增大的主要原因。而随着制炭温度的上升,O、H元素含量下降引起的碱性官能团的增加,和羟基和酚羟基官能团的减少是生物炭对As(Ⅲ)和Cr(Ⅵ)吸附量下降的主要因素。  相似文献   

17.
城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附   总被引:1,自引:0,他引:1  
热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g~(-1)。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH~(3+)、NH_2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t~(-1)的经济效益,作为废水处理的吸附剂具有较好的应用前景。  相似文献   

18.
为了寻求蚯蚓粪的资源化途径,采用慢速热解制备蚓粪生物炭(VMBC),在探讨热解温度对生物炭(VMBC)基本理化性质影响的基础上,深入研究VMBC吸附甲基橙的性能。结果表明,提高热解温度,炭产率与C、H、O、N含量下降,灰分和比表面积则增大。高温有利于生物炭芳香性和疏水性形成。提高热解温度可以改善VMBC对甲基橙的吸附能力。此外,较高的甲基橙初始浓度可促进VMBC对甲基橙的吸附。较低的p H和较高的吸附温度有利于甲基橙的吸附。Freundlich模型可以较好的拟合VMBC对甲基橙的吸附,表明VMBC对甲基橙的吸附为多层非均相吸附,且较容易进行。二级动力学模型能够较好的拟合吸附过程,表明VMBC对甲基橙的吸附受化学作用的主导,且VMBC表面官能团在吸附过程中起到重要的作用。  相似文献   

19.
为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。  相似文献   

20.
生物炭对土壤吸附邻苯二甲酸二乙酯的影响   总被引:1,自引:0,他引:1  
选择花生壳为原材料,采用限氧升温法在450、700℃温度下分别热解2、4、6 h制备6种生物炭,在对其表面性质和元素组成进行分析的基础上,重点考察生物炭对土壤吸附邻苯二甲酸二乙酯(diethyl phthalate,DEP)的影响。结果表明:生物炭的比表面积和总孔体积随着热解温度的升高而增加,热解时间的延长也会提高比表面积和总孔体积,而4 h是较为适宜的热解时间;生物炭中元素组成主要受热解温度的影响,热解时间的作用很小,热解温度的升高使生物炭的芳香性增强,极性降低;添加生物炭能显著提高土壤对DEP的吸附能力;Langmuir模型和Freundlich模型均能较好地拟合添加生物炭土壤对DEP的吸附特征;在不同的平衡浓度条件下,生物炭对土壤吸附DEP的贡献率介于82.07%~99.49%之间,表明生物炭对土壤中DEP的吸附发挥着主导作用。相关分析发现,吸附参数ΔKoc与生物炭的比表面积和总孔体积具有显著相关性,提高比表面积和改善孔隙结构可以增强生物炭对DEP的吸附能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号