首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了解西溪湿地底泥质量现状,2012年9月采集保护区内不同干扰类型的底泥样本,测试了底泥中重金属和POPs中PCBs、OCPs和PAHs的含量,并对湿地底泥污染进行了生态风险初步评价。结果表明,底泥中未检出PCBs和OCPs,但检测出14种EPA优控PAHs,总PAHs的浓度范围为115.9~217.8 ng·g^-1,低于潜在生态风险的效应区间低值ERL,其中列入中国"水中优先控制污染黑名单"的7种PAHs均有检出并且其总量占∑PAHs 1/2左右(平均为50.08%);底泥中8种重金属含量平均值低于《土壤环境质量标准》(GB 15618—1995)的二级标准,但Hg、Zn、Pb、Ni含量在多个位点已超过一级标准;分别采用土壤背景值和国家一级标准为参比值对湿地底泥中重金属进行单因子污染风险指数评价,发现分别有7种和4种元素的污染指数大于1;综合分析不同干扰类型的底泥质量,发现底泥疏浚能有效降低有机质含量、全氮和PAHs含量,但对全磷、重金属含量则无明显效果,封闭水体的干塘措施能显著减少污泥量和有机物含量。研究结果表明,西溪湿地底泥中高环PAHs和重金属污染水平可能对西溪湿地生物具有潜在的生物毒性作用及不利的生态影响效应,其疏浚底泥农用则无生态风险。  相似文献   

2.
高原 《四川环境》2012,(4):87-89
本文通过多年滇池底泥的采样监测数据,采用地积累指数法和对数衰减模型评估滇池的底泥质量状况,希望摸清底泥中重金属污染状况,并分析评价其对水生生物的风险,为底泥疏浚、截污护岸的滇池治理工程提供一定的科学依据。研究表明:以地积累指数法评价,(1)滇池监测断面底泥质量呈现轻度污染,镉出现一定程度富集,汞在个别监测断面也出现富集情况;(2)6种重金属污染排序为镉>汞>铅>铜>铬>砷;(3)从监测断面来看,海口西污染程度较重,滇池南底泥质量较好。采用对数衰减模型评价,(1)滇池监测断面沉积物重金属污染存在潜在生物风险,应引起重视;(2)从产生可以观察到毒性效果的可能性大小看,6种重金属潜在危害可能性排序为砷>铅>铜>铬>镉>汞;(3)从监测断面来看,白鱼口和观音山中潜在危害可能性大。从富集污染程度分析,海口西监测断面的底泥污染最重,可考虑在海口西监测断面附近进行一定的底泥疏浚工程。从而达到治标治本的目的。滇池监测断面沉积物重金属污染存在潜在生物风险,应引起重视,但在可控范围。  相似文献   

3.
采用地积累指数法和潜在生态风险指数法对广西某蔗田土壤中重金属污染进行评价。结果表明:4种重金属元素的地积累指数污染程度由强到弱依次为:Cd〉Zn〉Pb〉Cu,潜在生态危害指数污染程度由强到弱依次为:Cd〉Pb〉Cu〉Zn,其中zn的影响程度发生了变化。2种评价方法的结果存在差异,蔗田土壤的地积累指数污染程度处于无污染情况,而潜在生态危害指数污染程度处于低度危害程度。潜在生态危害指数考虑外源重金属的富集程度和不同重金属的生物毒性的影响,使其评价结果更准确。  相似文献   

4.
对洞庭湖表层底泥样进行了Cd、Pb、Cu、Zn、As、Hg和Cr等7种元素含量分析,并采用潜在生态风险指数法和土壤环境质量标准首次对各河流入湖口和各子湖区(段)表层底泥重金属的污染状况进行了评价。结果显示,洞庭湖各子湖区(段)表层底泥中以Cd污染最为严重,所有样点Cd含量均超过国家土壤质量三级标准限值;其次为Pb、Cu和Zn,各子湖区该三种金属含量均属于国家土壤质量二级标准;再次为As和Hg,东洞庭湖和西洞庭湖等湖区As、Hg均属于国家土壤质量二级标准;而Cr对洞庭湖表层底泥的污染最轻。主要河流入湖口中,湘江和资江入湖口表层底泥的Cd、Pb、Zn和As污染最为严重,沅江入湖口表层底泥的Hg污染最为严重,资江和汨罗江表层底泥的Cu和Cr污染最为严重。潜在生态风险指数法评价结果表明:西洞庭湖表层底泥重金属污染对生态潜在危害极高,南洞庭湖、东洞庭湖、城陵矶和大通湖的重金属污染潜在生态风险指数分级为高。根据潜在生态风险综合指数(RI)值大小,洞庭湖各子湖区(段)重金属复合污染程度由重到轻次序为:西洞庭湖大通湖城陵矶东洞庭湖南洞庭湖。  相似文献   

5.
底泥疏浚是清除江河湖库内源污染的重要措施,其疏浚方案的制定有其重要的内涵,应对疏挖深度、疏挖形式、疏浚设备、底泥处置等问题给予科学的分析,真正实现通过疏浚改善水环境的目标,并能为进一步修复和重建良好的水生态系统创造条件。对疏浚可能带来的不利影响及疏浚效果欠佳的可能原因等进行了一定的分析。  相似文献   

6.
本文测定了云龙湖底泥中铅(Pb)、锌(Zn)、铜(Cu)、锰(Mn)4种重金属元素含量。运用了累积指数法和潜在生态风险指数法对其污染程度和潜在生态风险进行评价:4种重金属中Cu为中度污染,Pb为轻度污染,其余2种均未构成污染。云龙湖底泥中重金属污染的潜在生态风险表现为轻微的程度,生态风险顺序是Mn>Cu>Pb>Zn。  相似文献   

7.
全氟化合物的分布、累积及生态毒理学效应   总被引:1,自引:0,他引:1  
全氟化合物(Perfluorinated compounds,PFCs)污染在全球范围内已普遍存在,其在环境中的浓度增长迅速,受到人们越来越多的关注。环境中PFCs的迁移转化规律决定其环境效应,是进行环境和健康风险评价的基础。目前关于PFCs的研究主要集中于水体及生物体内PFCs的分析检测,对其生态毒理效应的研究尚处于初步阶段。本文介绍了PFCs研究现状,综述了PFCs在环境中的分布模式、生物体内的蓄积规律以及环境中PFCs的生态毒理效应等方面的最新研究进展,同时也阐述了PFCs污染对人体健康的影响,并提出了未来PFCs研究亟待解决的问题。  相似文献   

8.
对宝鸡千河河道11个监测点底泥的OM(总有机质)、TN(总氮)、TP(总磷)和重金属(Pb、Zn、Cu、Cr、Cd)含量进行了监测,评价了该河道底泥营养盐和重金属的潜在生态风险。结果表明:底泥中OM浓度为1.25~8.48g/kg,TN浓度为0.14~1.92g/kg,TP浓度为0.41~1.02g/kg;营养盐污染评价结果表明,该河段底泥有机指数总体上处于清洁水平,但部分监测点有机氮污染相对严重,应注意对外源氮的控制;重金属Pb浓度为15.1~49.1mg/kg,Zn浓度为51.1~171.9 mg/kg,Cr浓度为7.86~43.5 mg/kg,Cd浓度为0.09~0.88 mg/kg,Cu浓度为3.64~19.5mg/kg;底泥中Pb、Zn、Cd的平均含量高于陕西省土壤元素背景值;重金属污染评价结果表明,底泥潜在重金属生态风险指数(RI)平均值为146.1,存在轻微的潜在生态风险水平;底泥中Cd的潜在生态危害风险高,贡献最大。  相似文献   

9.
生态风险评价是污泥环境风险评价的重要组成部分。本文通过对美国污泥土地利用生态风险评价的研究,阐述了污泥土地利用生态风险评价过程中涉及的基本概念和定量研究方法,并对存在的困难进行了探讨。文章建议我国应借鉴国外污泥土地利用生态风险评价的研究方法,尽快建立适合我国污泥处置的生态风险评价标准方法和指南,以发挥其在环境保护和管理中的作用。  相似文献   

10.
以四川某地8类企业场地周边土壤为研究对象,通过单因子污染指数法、单种重金属潜在生态风险指数及重金属综合污染潜在生态风险指数三种方法对其重金属污染风险进行了分析评价.结果表明:不同类型企业重金属污染程度及污染因子具有差异性;无机盐制造企业与无机材料制造企业场地周边土壤分别存在Cd轻度污染和重度污染;8类企业周边土壤中几种...  相似文献   

11.
Understanding toxicant effects at higher levels of biological organization continues to be a challenge in ecotoxicology and ecological risk assessment. This is due in part to a tradition in ecotoxicology of considering the direct effects of toxicants on a limited number of model test species. However, the indirect effects of toxicity may be a significant factor influencing the manner in which ecosystem structure and function respond to anthropogenic stressors. Subsequently, failure to incorporate indirect effects into risk assessment paradigms may be a significant source of uncertainty in risk estimates. The current paper addresses the importance of indirect effects in an ecotoxicological context. Laboratory, mesocosm, and whole ecosystem research into indirect effects is reviewed. The implications of indirect effects for ecological risk assessment and potential areas of profitable future research are also discussed.  相似文献   

12.
The Science Advisory Board of the US Environmental Protection Agency has recommended that risk reduction strategies become the centerpiece of environmental protection. The goal in developing such strategies is to identify opportunities for greatest reduction of ecological risks. This is a perspective that is significantly more comprehensive than the traditional focus on human health risks arising from environmental degradation. The identification of ecological risks upon which environmental protection efforts should be focused requires an ecological risk assessment methodology that is based on anthropogenic stressors affecting an ecosystem and a set of impaired use criteria. A methodology based on this concept is developed and discussed in this article. The methodology requires that risk values be assigned to each ecosystem stressor-impaired use pair that reflect the degree to which the given stressor contributes to ecosystem risk as measured by the given impaired use criterion. Once these data are available, mathematical analyses based on concepts from fuzzy set theory are performed to obtain a ranking of ecosystem stressors. The methodology has been tested by applying it to a case study involving Green Bay of Lake Michigan. A workshop was held in which 11 persons with extensive knowledge of the Green Bay ecosystem determined risk values through a group-consensus process. The analytical portion of the methodology was then used to rank the ecosystem risks (stressors) from several perspectives, including prevention management and remediation management. The overall conclusion of the workshop participants was that the fuzzy set decision model is a useful and effective methodology for differentiating environmental risk.  相似文献   

13.
Ecological risk assessment of TBT in Ise Bay   总被引:1,自引:0,他引:1  
An ecological risk assessment of tributyltin (TBT) in Ise Bay was conducted using the margin of exposure (MOE) method. The assessment endpoint was defined to protect the survival, growth and reproduction of marine organisms. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Ise Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. Estimated MOEs for marine organisms for 1990 and 2008 were approximately 0.1-2.0 and over 100 respectively, indicating a declining temporal trend in the probability of adverse effects. The chemical fate model predicts a much longer persistence of TBT in sediments than in the water column. Therefore, it is necessary to monitor the harmful effects of TBT on benthic organisms.  相似文献   

14.
Transgenic or genetically modified plants possess novel genes that impart beneficial characteristics such as herbicide resistance. One of the least understood areas in the environmental risk assessment of genetically modified crops is their impact on soil- and plant-associated microbial communities. The potential for interaction between transgenic plants and plant residues and the soil microbial community is not well understood. The recognition that these interactions could change microbial biodiversity and affect ecosystem functioning has initiated a limited number of studies in the area. At this time, studies have shown the possibility that transgenes can be transferred to native soil microorganisms through horizontal gene transfer, although there is not evidence of this occurring in the soil. Furthermore, novel proteins have been shown to be released from transgenic plants into the soil ecosystem, and their presence can influence the biodiversity of the microbial community by selectively stimulating the growth of organisms that can use them. Microbial diversity can be altered when associated with transgenic plants; however, these effects are both variable and transient. Soil- and plant-associated microbial communities are influenced not only by plant species and transgene insertion but also by environmental factors such as field site and sampling date. Minor alterations in the diversity of the microbial community could affect soil health and ecosystem functioning, and therefore, the impact that plant variety may have on the dynamics of the rhizosphere microbial populations and in turn plant growth and health and ecosystem sustainability, requires further study.  相似文献   

15.
Ecological risk assessment provides a methodology for evaluating the threats to ecosystem function associated with environmental perturbations or stressors. This report documents the development of a conceptual model for assessing the ecological risk to the water quality function (WQF) of bottomland hardwood riparian ecosystems (BHRE) in the Tifton-Vidalia upland (TVU) ecoregion of Georgia. Previus research has demonstrated that mature BHRE are essential to maintaining water quality in this portion of the coastal plain. The WQF of these ecosystems is considered an assessment endpoit—an ecosystem function or set of functions that society chooses to value as evidenced by laws, regulations, or common usage. Stressors operate on ecosystems at risk through an exposure scenario to produce ecological effects that are linked to loss of the desired function or assessment end point. The WQF of BHRE is at risk because of the ecological and environmental quality effects of a suite of chemical, physical, and biological stressors. The stressors are related to nonpoint source pollution from adjacent land uses, especially agriculture; the conversion of BHRE to other land uses; and the encroachment of domestic animals into BHRE. Potential chemical, physical, and biological stressors to BHRE are identified, and the methodology for evaluating appropriate exposure scenarios is discussed. Field-scale and watershed-scale measurement end points of most use in assessing the effects of stressors on the WQF are identified and discussed. The product of this study is a conceptual model of how risks to the WQF of BHRE are produced and how the risk and associated uncertainties can be quantified.  相似文献   

16.
The task of regulating potentially harmful chemicals in the environment is presently hindered by the lack of appropriate concepts and methods for evaluating the effects of anthropogenic chemicals on ecosystems. Toxicity tests at the molecular and physiological levels have been used successfully as indicators of adverse effects on test organisms and have been extrapolated to humans to establish a basis for risk assessment. However, laboratory measurements of effects upon individuals do not translate readily into potential effects upon natural populations, in part because natural populations interact with other populations and with the physical environment. Even more difficult to assess are the deleterious impacts of anthropogenic chemicals on ecosystems, because of effects on species interactions, diversity, nutrient cycling, productivity, climatic changes, and other processes.Effects on ecosystems resulting from chemical stresses are outside the realm of classical toxicology, and an ecosystem-level perspective is essential for the consideration of such effects; but the science that deals with ecosystem-level effects,ecotoxicology, is still developing. This article synthesizes the topics discussed at a workshop on ecotoxicology held by the Ecosystems Research Center at Cornell University. Topics covered include: the regulatory framework in which ecotoxicological research must be applied; ecosystem modification of toxicant fate and transport; how ecosystem composition, structure, and function are influenced by chemicals; methods currently available for predicting the effects of chemicals at the ecosystem level; and recommendations on research needs to enhance the state of the science of ecotoxicology.  相似文献   

17.
The United States Environmental Protection Agency (EPA), with the assistance of the US Department of Energy (DOE) and the National Oceanographic and Atmospheric Administration (NOAA) is examining the utility of a critical loads approach for evaluating atmospheric pollutant effects on sensitive ecosystems. A critical load has been defined as, “a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur according to present knowledge.” Working in cooperation with the United Nations Economic Community for Europe’s (UN-ECE) Long Range Transboundary Air Pollution (LRTAP) Convention, the EPA has developed a flexible, six-step approach for setting critical loads for a range of ecosystem types. The framework is based on regional population characteristics of the ecosystem(s) of concern. The six steps of the approach are: (1) selection of ecosystem components, indicators, and characterization of the resource; (2) definition of functional subregions; (3) characterization of deposition within each of the subregions; (4) definition of an assessment end point; (5) selection and application of models; and (6) mapping projected ecosystem responses. The approach allows for variable ecosystem characteristics and data availability. Specific recognition of data and model uncertainties is an integral part of the process, and the use of multiple models to obtain ranges of critical loads estimates for each ecosystem component in a region is encouraged. Through this intercomparison process uncertainties in critical loads projections can be estimated. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract #68-C8-0006 with Man Tech Environmental Technology, Inc. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorse ment or recommendation for use.  相似文献   

18.
We performed a sociocultural preference assessment for a suite of ecosystem services provided by the Kiamichi River watershed in the south‐central United States, a region with intense water conflict. The goal was to examine how a social assessment of services could be used to weigh tradeoffs among water resource uses for future watershed management and planning. We identified the ecosystem services beneficiaries groups, analyzed perception for maintaining services, assessed differences in the importance and perceived trends for ecosystem services, and explored the perceived impact on ecosystem services arising from different watershed management scenarios. Results show habitat for species and water regulation were two ecosystem services all beneficiaries agreed were important. The main discrepancies among stakeholder groups were found for water‐related services. The identification of potential tradeoffs between services under different flow scenarios promotes a dynamic management strategy for allocating water resources, one that mitigates potential conflicts. While it is widely accepted the needs of all beneficiaries should be considered for the successful incorporation of ecosystem services into watershed management, the number of studies actually using the sociocultural perspective in ecosystem service assessment is limited. Our study demonstrates it is both possible and useful to quantify social demand of ecosystem services in watershed management.  相似文献   

19.
During disinfection, chlorine reacts with organic matter present in drinking water and forms various undesirable chlorinated by-products (CBPs). This paper describes a study of the spatial variability of human health risk (i.e., cancer effects) from CBP exposure through drinking water in a specific region. The region under study involves nine drinking water distribution systems divided into several zones based on their characteristics. The spatial distribution of cancer risk (CR) was estimated using two years of data (2006-2008) on various CBP species. In this analysis, trihalomethanes (THMs) and haloacetic acids (HAAs) served as surrogates for CBPs. Three possible routes of exposure (i.e., via ingestion, inhalation and dermal contact) were considered for each selected compound. The cancer risk assessment involved estimating a unit risk (R(T)) in each zone of the selected distribution systems. A probabilistic analysis based on Monte Carlo simulations was employed. Risk assessment results showed that cancer risk varied between systems, but also within individual systems. As a result, the population of the same region was not exposed to the same risk associated with CBPs in drinking water. Unacceptable levels (i.e., R(T) > 10(-4)) for the estimated CR were determined for several zones in the studied region. This study demonstrates that a spatial-based analysis performed to represent the spatial distribution of risk estimates can be helpful in identifying suitable risk management strategies. Suggestions for improving the risk analysis procedure are also presented.  相似文献   

20.
Run-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality. The conceptual model also includes longer-term threats to Great Barrier Reef water quality and ecosystem health, such as global climate change, that will potentially confound direct model interrelationships. The model recognises that system-specific attributes, such as monsoonal wind direction, rainfall intensity, and flood plume residence times, will act as system filters to modify the effects of any water-quality system stressor. The model also summarises key ecosystem responses in ecosystem health that can be monitored through indicators at catchment, riverine, and marine scales. Selected indicators include riverine and marine water quality, inshore coral reef and seagrass status, and biota pollutant burdens. These indicators have been adopted as components of a long-term monitoring program to enable assessment of the effectiveness of change in catchment-management practices in improving Great Barrier Reef (and adjacent catchment) water quality under the Queensland and Australian Governments’ Reef Water Quality Protection Plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号