首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为明确不同量生物炭施用与蚯蚓互作对土壤N_2O和CO_2排放的影响,设置了仅有土壤(S)、接种蚯蚓(SE)、施用低剂量生物炭(SL)、接种蚯蚓并施用低剂量生物炭(SLE)、施用高剂量生物炭(SH)和接种蚯蚓并施用高剂量生物炭(SHE)6个处理,开展了50 d的室内培养试验。结果表明,施加生物炭显著降低蚯蚓生物量,与接种前相比,SE处理蚯蚓生物量下降18%,SLE处理蚯蚓生物量下降26%,而SHE处理蚯蚓生物量下降高达37%。培养结束后,接种蚯蚓处理(SE、SLE和SHE)N_2O累积排放量分别为589.8、538.0和258.3μg·kg~(-1),均显著高于未接种蚯蚓处理(S、SL和SH处理N_2O累积排放量分别为57.1、34.5和23.4μg·kg~(-1))。添加生物炭显著降低接种蚯蚓处理N_2O排放量,且生物炭添加量越高,效果越明显。接种蚯蚓处理(SE、SLE和SHE)CO_2累积排放量分别为686.1、682.2和420.7 mg·kg~(-1),均显著高于未接种蚯蚓处理(S、SL和SH处理CO_2累积排放量分别为346.9、268.7和165.9 mg·kg~(-1))。添加生物炭降低了接种蚯蚓处理CO_2累积排放量,但仅高剂量生物炭添加处理(SHE)与无生物炭处理(SE)间存在显著差异。主体间效应检验结果显示,蚯蚓、生物炭均对土壤CO_2和N_2O累积排放量产生显著影响,蚯蚓和生物炭的交互作用仅对N_2O累积排放量产生显著影响。此外,在所有处理中,添加生物炭均增加土壤pH值,降低土壤无机氮含量。因此,高剂量生物炭施用可能通过提高土壤pH值、降低土壤无机氮含量和对蚯蚓活性的影响来抑制蚯蚓作用下的土壤N_2O和CO_2排放。  相似文献   

2.
大气CO_2浓度升高会显著降低粳稻植株和叶片氮浓度,从而减缓叶片净光合速率和降低产量的响应幅度。植物氮浓度在高CO_2浓度下的降低与植株氮素吸收能力密切相关,而后者受到根系大小及其活力的调控。为探索通过提高粳稻根系生长及其活力来缓解大气CO_2浓度升高对氮吸收负效应的可行性,利用CO_2生长箱和农田开放式空气CO_2浓度增高FACE(free air CO_2 enrichment)研究平台,以促根突变体ERF3及其野生型作为研究对象,评价二者根系形态指标(总根长、冠根数和扎根深度)、根系活力、氮素吸收和利用效率、各器官氮浓度、叶片净光合速率和地上部生物量对CO_2浓度升高(+200μmol?mol-1)的响应。结果表明,(1)促根突变体ERF3和野生型总根长、冠根数、扎根深度及根系生物量在高CO_2浓度下均表现为显著增加(P0.05)。突变体ERF3根系形态指标和生物量对高CO_2浓度的响应幅度为42.3%~288.9%,较野生型高出6.4%~191.0%。(2)突变体ERF3单茎根系活力在高CO_2浓度下表现为显著(P0.05)增加,增幅为212.1%;而野生型在高CO_2浓度下无显著变化。(3)无论是生长箱还是田间盆栽试验,突变体ERF3在高浓度CO_2下均可以更好地协调氮素的吸收和利用过程。突变体ERF3各器官的氮浓度在高浓度CO_2下并未表现出明显降低趋势;而野生型在高浓度CO_2下表现为显著降低。(4)叶片氮浓度和Rubisco含量的稳定显著提高(P0.05)了突变体ERF3叶片的净光合速率对浓度CO_2升高的响应能力,增幅为42.8%。以上结果表明,未来育种可考虑通过提高粳稻根系生长和活力来减缓CO_2浓度升高对粳稻植株氮素吸收的负效应,从而促进水稻生长和生产。  相似文献   

3.
二氧化碳地质封存技术(简称CCS)被视为是一种直接、有效的减排手段,该技术是将原本排放到大气中的CO_2进行捕集,经过处理后注入封闭的地下储层,从而减少CO_2向大气中的排放,减缓大气污染和温室效应.目前,CCS技术已经受到国内外研究学者的广泛关注.中国的CO_2减排形势非常严峻,因此对二氧化碳地质封存的研究尤为迫切.国内对CCS的研究刚刚起步,为了更好的进行深入研究,拟从咸水层封存、深部不可开采煤层封存和废弃油气藏封存三个方面对国内外的研究现状进行综述,并提出了当前研究中的不足和需要进一步研究的问题.  相似文献   

4.
土壤CO_2与土下岩溶作用密切相关。了解不同土地利用类型下土壤CO_2的时空变化特征及来源,将有助于准确揭示岩溶碳循环规律。2018年1—5月,在柏树湾和后沟2个岩溶泉域不同深度土壤中插入PVC管,并通过注射器抽取土壤CO_2样品,通过对比土壤CO_2浓度及其δ~(13)C的变化特征分析岩溶作用与土壤CO_2之间的关系,并对土壤CO_2的来源进行示踪。结果表明,(1)柏树湾土壤CO_2浓度(1 812—18 654μmol·mol~(-1))大于后沟(507—9 975μmol·mol~(-1))。2个泉域上覆土壤的δ~(13)C相近,但柏树湾和后沟土壤CO_2的δ~(13)C分别为-22.4‰—-17.03‰和-16.33‰—-11.45‰。土壤CO_2的δ~(13)C接近其上覆植被,说明上覆植被差异是造成柏树湾土壤CO_2浓度大于后沟的主要原因。(2)柏树湾土壤CO_2浓度最大值出现在4月,并在5月降低;后沟除20 cm处土壤CO_2浓度最大值出现在5月外,其他深度土壤CO_2浓度最大值也出现在4月,并且在3月和5月分别出现了降低的趋势。土壤CO_2浓度的时间变化受温度和降水共同影响,过多的降水量可能对土壤CO_2产生抑制作用。(3)在垂向变化上,1—3月柏树湾和后沟土壤CO_2浓度均未出现双向梯度,而是同非岩溶区一样,表现为随土壤深度的增加而增加。这可能是由于1—3月降水减少导致土壤含水量降低,从而限制了岩溶作用对底部土壤CO_2的消耗造成的。而随着降水增加,土下岩溶作用增强,促进了底部土壤CO_2的消耗,土壤CO_2浓度的垂向变化由单向梯度转为双向梯度。另外,各泉域不同深度土壤CO_2的δ~(13)C差异较小,并且具有相似的季节变化规律,证实H_2SO_4和HNO_3溶蚀碳酸盐岩产生的CO_2对土壤CO_2的影响较小。  相似文献   

5.
以威廉环毛蚓(Pheretima guillemi)为试验生物,研究贵州万山矿区水稻土中汞〔w(总汞)为0.14~76 mg·kg-1,w(甲基汞)为0.65~3.8μg·kg-1〕的生物有效性。暴露试验结果表明,矿区土壤中甲基汞的生物富集因子(BAF)为5.37~17.55,高于无机汞的生物富集因子(0.14~1.14),说明甲基汞生物有效性比无机汞更高,具有潜在的生物放大效应。对蚯蚓体内汞形态的分析表明,蚯蚓体内甲基汞占总汞比例为0.26%~4.23%,高于土壤中甲基汞占总汞比例(0.1%)。随着土壤中汞浓度的增加,蚯蚓体内w(无机汞)(0.20~10.20 mg·kg-1)和w(甲基汞)(7.2~47.8μg·kg-1)增加。土壤无机汞浓度与蚯蚓体内无机汞浓度之间呈极显著线性相关(P0.01),但土壤甲基汞浓度与蚯蚓体内甲基汞浓度之间则不存在显著相关关系(P0.05)。综合文献调研结果,发现土壤无机汞浓度能较好地预测蚯蚓体内无机汞的富集。尽管万山矿区汞被认为是"惰性汞",但研究表明这些汞对蚯蚓仍具有较高的有效性,并可能在陆生生态系统中对蚯蚓捕食者产生潜在的生态风险。  相似文献   

6.
蚯蚓在评价土壤生态环境污染方面起着重要作用,但目前与生殖毒性相关的蚯蚓生物标志物中缺乏可以灵敏和快速对污染物生殖毒性进行诊断的生物标志物.本研究采用考马斯亮蓝法对蚯蚓精子顶体反应进行检测;采用响应面分析法优化苯甲酰精氨酸乙酯/乙醇脱氢酶(BAEE/ADH)联合测定法,以建立蚯蚓精子顶体酶活性测定法.结果表明,蚯蚓精子顶体率为(47.67±3.87)% ,最优测定条件为洗涤2次,抽提时间24 h,ADH浓度1.8 mg·mL-1 ,氧化型辅酶Ⅰ(NAD)浓度12 mg·mL-1 .为考察方法的可靠性,采用醋酸棉酚污染土壤暴露实验进行方法学考察.数据表明,醋酸棉酚污染土壤暴露3d后,检测出顶体酶活性变化,且与精子密度具有一定的相关性(r=0.9908).建立的蚯蚓顶体酶活性测定方法可以快速和有效的检测醋酸棉酚的生殖毒性变化,蚯蚓顶体酶活性有望作为生物标志物应用于土壤污染的生态毒理学快速诊断中.  相似文献   

7.
贵州省典型矿区土壤重金属污染对蚯蚓的毒性效应评估   总被引:1,自引:0,他引:1  
选取我国贵州省某矿区典型的重金属复合污染土壤开展28 d慢性毒性暴露试验,以蚯蚓体内2种抗氧化酶活性——过氧化氢酶(CAT)和超氧化物歧化酶(SOD)、8-羟基脱氧鸟苷(8-ODHG)和金属硫蛋白(MT)含量为生物指标,评估了以上生物指标与土壤重金属含量的相关性,探讨该研究方法用于矿区土壤重金属生态风险评估的可行性。结果表明,CAT和SOD在暴露周期内均出现先诱导后抑制的动态响应过程,表明蚯蚓通过提高CAT和SOD的活性来清除机体因污染胁迫而产生的自由基,以适应环境变化,在毒性缓解后,蚯蚓体内代谢产物的积累抑制了抗氧化氢酶活性,CAT和SOD活性下降并趋于稳定。暴露于重金属污染亚致死浓度时,蚯蚓体内的8-OHDG含量随着暴露时间的延长显著降低,随着暴露浓度的增加,损伤存在由低到高的转变。在28 d暴露周期内,蚯蚓体内MT在重金属胁迫下发挥了解毒作用,MT含量在蚯蚓暴露后第7天增加,随后逐渐降低。本文基于生物毒性试验综合评估了矿区典型重金属污染土壤的生态风险,研究结果对指导重金属复合污染土壤的修复与再利用具有重要意义。  相似文献   

8.
几种典型土壤中铜对赤子爱胜蚓的毒性差异比较研究   总被引:1,自引:3,他引:1  
土壤污染物基础生态毒理数据是开展污染土壤生态风险评价和构建土壤生态筛选基准的重要依据.以湖南红壤、北京潮土、吉林黑土和经济合作与发展组织(OECD)推荐的人工土壤为测试介质,按照国际标准化组织(ISO)颁布的测试方法,研究了铜在4种不同土壤中对赤子爱胜蚓(Eisenia fetida)的急性和慢性毒性.结果表明,铜在4种不同类型土壤中对赤子爱胜蚓的毒性效应差异较大,在湖南红壤、北京潮土、吉林黑土和人工土壤中的半致死浓度(14d LC50)分别为134.4、557.7、715.2和867.0mg·kg-1;赤子爱胜蚓体重对较低浓度铜污染响应相对不敏感,而较高浓度铜污染(接近引起蚯蚓死亡的高浓度)则可导致蚯蚓体重显著降低;铜对赤子爱胜蚓生殖(产茧量)的影响较为明显,其在湖南红壤、北京潮土、吉林黑土和人工土壤中对蚯蚓产茧量产生50%抑制作用的有效中浓度(28d EC50)分别为58.2、140.1、258.9和150.4mg·kg-1,无可见效应浓度(NOECs)分别为50、50、200和100mg·kg-1.鉴于我国土壤类型的多样性十分丰富,不同地区土壤性质差异较大等特点,在制定土壤筛选基准时需考虑污染物在不同土壤中生物有效性与毒性的差异。  相似文献   

9.
氟虫双酰胺对蚯蚓的生化毒性与细胞毒性研究   总被引:1,自引:0,他引:1  
双酰胺类杀虫剂已成为全世界第4大类最常用的杀虫剂,具有非常广阔的应用前景。然而,目前关于双酰胺类杀虫剂生态毒性评估方面的研究还比较少。为探究双酰胺类杀虫剂对非靶标生物的毒性作用,选取赤子爱胜蚓(Eisenia fetida)为受试生物,研究了典型双酰胺类杀虫剂氟虫双酰胺对非靶标动物蚯蚓的生化毒性和细胞毒性以及其在人工土和蚯蚓体内的浓度变化情况。结果表明,氟虫双酰胺在人工土壤中十分稳定,在整个暴露期间氟虫双酰胺的浓度变化不超过20%。氟虫双酰胺在蚯蚓体内的含量随染毒浓度的升高和暴露时间的推移而增加,呈明显的时间和剂量-效应关系;在染毒浓度为0.1和1.0 mg·kg-1的处理组中,氟虫双酰胺未对蚯蚓产生明显的氧化胁迫效应。在染毒浓度为5.0和10.0 mg·kg-1的处理组中,蚯蚓体内活性氧(ROS)含量显著高于其他处理组,过量的ROS诱导蚯蚓体内各种抗氧化酶活性发生异常变化,并在蚯蚓体内造成了脂质过氧化、蛋白质羰基化和DNA损伤。研究表明,当土壤中氟虫双酰胺的浓度为5.0和10.0 mg·kg-1时可能会对蚯蚓产生很高的风险。此外,彗星实验对氟虫双酰胺诱导的氧化胁迫较为敏感,可以作为敏感生物标志物对氟虫双酰胺造成的土壤污染进行预警。  相似文献   

10.
为向污染土壤的监测、生态毒理诊断及修复提供方法和数据,以氯丹、灭蚁灵污染场地土壤为供试土壤,测定了氯丹、灭蚁灵复合污染对蚯蚓的急性毒性效应以及对小麦、小白菜、玉米和水稻4种植物种子发芽率和根伸长抑制率的影响.结果表明,蚯蚓对本场地污染响应十分敏感,处理d 3高浓度组开始出现死亡,此后死亡率随污染物浓度增大而上升,d 14部分高浓度组死亡率达到100%;同一浓度下,氯丹和灭蚁灵对4种植物种子根伸长抑制率均显著大于对种子发芽的抑制率,植物的根生长比种子发芽对有机污染物的毒性更为敏感.4种植物种子对污染场地土壤的敏感性为小麦>小白菜>水稻>玉米.氯丹和灭蚁灵对蚯蚓的毒性要大于对这几种植物的毒性,蚯蚓对氯丹和灭蚁灵的响应更加敏感.因此,蚯蚓作为指示生物,其急性毒性试验可作为氯丹和灭蚁灵污染场地的诊断指标,诊断周期以14 d为宜.  相似文献   

11.
An artificial soil method was applied to study the effects of perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) on earthworms (Eisenia fetida). Survival, growth inhibition and damage to DNA of earthworms were detected after 14 d acute exposure. The 14 d-LC50 of PFOS and PFOA was 478.0?mg·kg?1 dw and 759.6?mg·kg?1 dw, respectively, indicating that they were of low toxicity. Both PFOS and PFOA could significantly inhibit the growth of earthworms after 14 d exposure, and growth inhibition rates increased with the greater concentrations of PFOS or PFOA, showing a dose–response relationship (PFOS: r?=?0.951, P r?=?0.962, P?P?50 of PFOS was lower than that of PFOA, the growth inhibition rate of earthworm exposed to PFOS was higher than that exposed to PFOA at the same concentration level, and the median values of TL, CL and OTM in PFOS treatments were also higher than those in PFOA treatments. In conclusion, both these fluorine compounds were moderately toxic to earthworms, but the PFOS effect was greater than that of PFOA.  相似文献   

12.
Although the flow dynamics of pure liquid drops in other liquids has been well researched, little attention has been paid to the impacts of impurities. Hence, most of research is not directly applicable to the real world. To address this gap, we conducted numerical experiments simulating the rise of pure and contaminated drops. It was selected to study liquid CO2 drops contaminated with SO2 under high pressure because such mixtures mimic potential scenarios in which drops may leak from carbon capture and storage (CCS) facilities or pipelines. First, numerical simulation experiments were performed to validate our method by comparing our results with previous research on pure drops. Second, the validated numerical approach was applied to simulations of contaminated drops to investigate how contaminants affect rising drops. The results show that the SO2 contamination caused changes in deformation, breakup phenomena, rising velocities, surrounding flow fields and drag coefficients. Most importantly, the contamination resulted in the formation of smaller “child drops”; such breakup is not observed in pure CO2 drops. The formation of child drops in turn affects the streamlines, patterns and areas of wakes behind the contaminated drops. The addition of contaminants also enhances the dissolution rate, which is affected by the contaminant concentration and by the flow dynamics of the rising drop. Our results would improve understanding the rise of impure CO2 drops, such as drops potentially leaked by future CCS operations.  相似文献   

13.
Seasonal changes in river water chemistry and in soil atmospheric CO2 concentrations at two depths and drainage water solute composition at two upland peaty podzol sites in north east Scotland were monitored over 12 months. the CO2 concentrations were controlled by changes in soil temperature and moisture status. Highest CO2 concentrations were observed in late summer 1988 when both soil temperatures and the moisture status of the soils were high. Then maximum CO2 concentrations of 4% (v/v) were recorded for one of the sites. No significant correlations between seasonal changes in soil CO2 concentrations and river water solute composition were observed. Nevertheless the field results and laboratory experiments indicated that in upland areas, where soils with acid surface horizons are common, soil CO2 substantially influences river water chemistry at baseflow, increasing the pH and cation concentration of the soil water draining into the river. the results suggest that transfer of carbon as dissolved CO2 in drainage water is a significant pathway for CO2 transfer to the atmosphere.  相似文献   

14.
Much attention is paid to soil health and environmental safety. Earthworms are an important indicator of soil ecosystem health and safety. Ecological toxicity of acetochlor and excessive urea, in both their single and joint effects, on earthworm Esisenia foelide was thus studied using the soil-culture method. Acetochlor had an enhanced toxicity from low concentration to high concentration. The mortality of earthworms after a 6-day exposure was changed from 0 to 86.7%, and the weight change rate ranged from 7.86 to –30.43%, when the concentration of acetochlor was increased from 164 to 730 mg kg–1. Urea expressed its positive and beneficial effects on earthworms when its concentration was lower than 500 mg kg–1. Strongly toxic effects took place when the concentration of urea was higher than 1000 mg kg–1. The mortality of earthworms exposed to urea reached 100% when its concentration was more than 1500 mg kg–1. When the concentration of urea was lower than 500 mg kg–1, there were antagonistic effects between the two agrochemicals on earthworms; when the concentration of urea was higher than 500 mg kg–1, joint toxic effects of acetochlor and excessive urea on earthworms were synergic. In any case, excessive urea application is very harmful to the health of soil ecosystems.  相似文献   

15.
Summary.  We examined the effects of defoliation con-currently with elevated temperature and CO2 on some chemical and morphological characteristics in the leaves of silver birch seedlings (Betula pendula). We also analyzed the consequent changes in the palatability of leaves for adult blue alder leaf beetles (Agelastica alni). Under the different climatic treatments, the seedlings were subjected to three fertilizer treatments (0 kg, 130 kg and 270 kg N ha−1) and defoliation treatments (0%, 25% and 50% of the total leaf area). In each climatic treatment, fertilization increased the nitrogen content in the leaves, but decreased total concentrations of soluble phenolics, detected by high-performance liquid chromatography (HPLC), and insoluble condensed tannins. Defoliation, both independently and in combination with elevated temperature and CO2, decreased the concentrations of the phenolics. Compared to the intact controls, the leaves of the defoliated seedlings were smaller and tougher. Under elevated temperature, the beetles consumed a smaller amount of the leaves of plants subjected to the high fertilization, while under ambient climatic conditions, fertilization increased the feeding. The total leaf consumption was higher under the ambient climatic conditions than under elevated temperature, elevated CO2 or the combination of elevated temperature and CO2.  相似文献   

16.
Upon exposure to altered levels of CO2, plants express a variety of acclimations to CO2 directly, over and above acclimations to indirect changes in temperature and water regimes. These acclimations commonly include increased photosynthetic CO2 assimilation and increased water-use efficiency with reduced N content and reduced stomatal conductance. The robust generic acclimations are explicable by combining simple models of carboxylation, stomatal control, energy balance, and functional balance. Species- or genotype-specific acclimations are overlaid on these generic acclimations. Several such specific acclimations that are often seen are readily incorporated in an extended model. These specific acclimations generate a great spread of values in key performance measures of photosynthesis, water- and N-use efficiencies, and rates of water and N use, even among C3 species that are the focus of this work. These performance measures contribute strongly to relative fitness and thus to evolving biogeographic distributions. The spread in fitness values is so large as to impend “chaotic” shifts in biogeography (and, ultimately, evolution) that are not understandable with models specific to species or functional groups; rather, a systematic study of key physiological and developmental parameters is merited. Also merited is a coherent extension of the model used here, or similar models, to include other phenomena, including mycorrhizal associations, transience in resource availability, etc. The composition of useful approximate fitness functions from physiological and allocational responses is a major challenge, with some leads originating from the model. In the search to extract patterns of responses, arguments based on the responses being close to optimal or adaptive will be misleading, in view of the absence of selection pressure to perform adaptively at high CO2 for over 20 million years. I offer suggestions for more useful research designs.  相似文献   

17.
Antibiotics are newly emerging organic pollutants in manure, soil, vegetables and water. Animal manure application might be leading to the accumulation of antibiotics in the farmland. However, the effect of sulphamethazine (SMZ) on the soil microbial community was scarcely investigated. This study was aimed to evaluate the impact of SMZ on poultry manure, on the structure and function of microbial community, carbon mineralisation, and changes in nitrogen forms in soil via an incubation experiment lasting 56?d. The treatments consisted of poultry manure at 1% wt (PM), PM containing 20?mg?kg?1 SMZ (PM?+?20SMZ) and PM containing 100?mg?kg?1 SMZ (PM?+?100SMZ), along with the untreated soil (control). Solid phase extraction was performed to measure the SMZ concentration in soils using high-pressure liquid chromatography. The cumulative CO2-C was increased in all treated soils over the incubation period compared to the control. The PM?+?100SMZ had the highest increase in cumulative CO2-C from the soil at 56?d of incubation. The treatment of PM?+?20SMZ showed a short-term decrease in nitrification rate in the soils at 1?d by altering the microbial community composition with 17% dissimilarity and decreasing the abundance of bacteria compared to PM-treated soil. The PM?+?100SMZ increased C mineralisation in the soil.  相似文献   

18.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

19.
The application of herbicides in agricultural practices may pose certain toxic effects on non-target species including molluscs (snails), earthworms and other soil-dwelling organisms, which would in turn put the lives of humans at great risk. This study considered the lethal and sublethal effects of Grassate®, a non-selective glyphosate-based herbicide on snails (Archachatina marginata) and earthworms (Aporrectodea longa) with regards to ecotoxicological risk assessment. The lethal concentration LC50 for the test chemical averaged at 1.731?±?0.05 and 3.045?±?0.08?mg?kg?1 for snails and earthworms, respectively. There was decrease in growth and biomass with increased concentration for the species. Growth inhibition of 11–38% in size and 7–43% in length was obtained for earthworms while 26–65% reduction in weight was reported for snails. Using the ecotoxicological risk assessment matrix, the herbicide was classified as D 4 (A; P; E) or 16 (A; P; E), which could be considered as high risk to animals, plant and the environment. Thus, if these herbicides are used uncontrollably and unregulated, further consequence could lead to harmful effects on humans who feed on snails, a rich source of protein and depend on earthworms for nutrient.  相似文献   

20.
The recent global financial crisis has highlighted the need for balanced and efficient investments in the reduction of the greenhouse effect caused by emissions of CO2 on a global scale. In a previous paper, the authors proposed a mathematical model describing the dynamic relation of CO2 emission with investment in reforestation and clean technology. An efficient allocation of resources to reduce the greenhouse effect has also been proposed. Here, this model is used to provide estimates of the investments needed in land reforestation and in the adoption of clean technologies for an optimum emission and abatement of CO2, for the period of 1996–2014. The required investments are computed to minimize deviations with respect to the emission targets proposed in the Kyoto Protocol for European Countries. The emission target can be achieved by 2014 with investments in reforestation peaking in 2004, and a reduction of the expected GDP of 42%, relative to 2006. Investments in clean technology should increase between 2008 and 2010 with maximum transfer figures around 70 million American dollars. Total (cumulative) costs are, however, relatively high depending on the price of carbon abatement and the rate at which the expected CO2 concentration in the atmosphere should be reduced. Results highlight the advantages for policy makers to be able to manage investments in climate policy more efficiently, controlling optimum transfers based on a portfolio of actions that tracks a pre-defined CO2 concentration target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号