首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
刘爱荣  李季  王伟  张伟贤 《环境化学》2022,(4):1278-1291
纳米零价铁材料(nanoscale zero-valent iron, nZVI)是环境领域应用最广泛的纳米材料之一,因其原材料来源丰富、反应产物环境友好,在分离/固定水中重金属方面得到了广泛的研究.实验室研究表明,nZVI能够有效去除复杂实际废水中铜、砷、铅、锌、金等多种重金属,表现出较高的去除负荷.本研究团队在国内首先研究以nZVI技术为核心,开发分离、固定重金属工业废水中重金属的针对性废水处理工艺.构建了废水处理“反应-分离-回用”式纳米零价铁反应器(nano iron reactor, NIR)装置,通过“小试—中试—工程应用”逐级科学放大,将其应用于多种重金属工业废水的处理当中.本文总结了纳米零价铁废水处理工艺,综述了NIR反应器技术处理典型重金属废水的中试和工程应用案例,为nZVI的实际环境应用以及重金属废水处理提供了理论及技术借鉴.  相似文献   

2.
工业废水中重金属的存在威胁着环境和人类健康,有效去除环境中的重金属离子具有重要意义.论文简要介绍了近年来石墨基复合材料负载纳米零价铁(nZVI)去除废水中重金属离子的研究,探讨了多种石墨基负载nZVI复合材料对重金属离子的吸附特性和环境条件对吸附性能的影响因素,并对其未来的研究和应用进行了总结和展望.  相似文献   

3.
牛红云  吕宏洲  蔡亚岐 《环境化学》2021,40(12):3662-3671
以机械化学研磨法制备的Fe-EDTA聚合物为前驱体,开发了一种免液相浸渍的碳热法,来实现对多孔碳材料固载纳米零价铁.考察了Fe-EDTA聚合物碳化温度、与多孔碳的混合方式及质量比等因素对零价铁负载的影响.相比于传统液相浸渍+碳热法制备的零价铁/多孔碳复合材料,免浸渍碳热法所得复合材料的表面积大、吸附位点多、零价铁粒径小且均匀.以所制备的零价铁/多孔碳复合材料为催化剂/吸附剂,用于水样中甲基橙、Cr(Ⅵ)及污水中COD的去除.结果 表明,与液相浸渍+碳热法制备的复合材料相比,免浸渍碳热法制备的零价铁/多孔碳复合材料的零价铁具有纳米级粒径,因此拥有超高的活性,可更有效地吸附、还原及氧化降解污染物,且表现出良好的重复利用性.动态装柱实验表明,该复合材料在较长时间内可以稳定去除污水中的COD.  相似文献   

4.
零价纳米铁对大肠杆菌的毒性效应   总被引:2,自引:0,他引:2  
以大肠杆菌为研究对象,通过检测尺寸为20 nm的零价纳米铁暴露下大肠杆菌形貌、生长曲线和细胞内酶活性的变化,研究了零价纳米铁对大肠杆菌的毒性效应,并探讨了其可能的毒性机制.用透射电镜(TEM)观察零价纳米铁与大肠杆菌(JM109)接触后细胞的形态变化;用0、112、560和1 120 mg·L-1的零价纳米铁染毒大肠杆...  相似文献   

5.
考察了预磁化对零价铁去除水中甲基橙、苋菜红、金橙Ⅱ、氨基黑和肼黄等不同偶氮染料性能的影响,结果表明,预磁化强度由0逐渐增大至750 m T时,零价铁去除甲基橙的表观速率常数由0.0078 min~(-1)逐渐增大至0.0677 min~(-1),反应速率提高倍数达到1.4—8.7倍.预磁化后的零价铁(Mag-ZVI)除甲基橙表观速率常数与其剩磁呈线性正相关,这一定程度上说明了预磁化对零价铁除污染活性的强化作用主要与其颗粒剩磁有关.通过系统考察了Mag-ZVI在不同p H条件下对甲基橙的去除性能以及Mag-ZVI对苋菜红、金橙Ⅱ、氨基黑和肼黄的去除性能,进一步证实预磁化对于零价铁在不同反应体系下除偶氮染料均呈现正面效应.预磁化对零价铁去除染料的强化作用具有一定的普适性,其在印染废水处理中具有广阔的应用前景.  相似文献   

6.
研究了纳米零价铁协同微生物降解水溶液中的PCB77。从污染土样中分离出一株多氯联苯(PCBs)降解菌,对其进行革兰氏染色形态观察,并用降解菌降解PCB77。结果表明:培养温度30℃、溶液pH 7.0、微生物接种量109 cfu·mL-1、PCB77初始质量浓度1.0 mg·L-1时,降解菌对PCB77的降解率为58.63%。纳米零价铁对PCB77的降解是一个还原脱氯过程,7 d时的降解率为82.99%。采用纳米零价铁/微生物联合体系降解水溶液中PCB77,降解率显著高于微生物和纳米零价铁单一体系,降解率可达93.30%。研究结果将为环境中PCBs残留提供了一种高效去除的方法,并为PCBs污染土壤的修复提供理论依据。  相似文献   

7.
负载型纳米零价铁不仅能够克服单一纳米零价铁(nanoscale zero-valent iron,nZVI)不稳定、易团聚等缺点,还能提高污染物的去除效率,因此被认为是一类具有广泛应用前景的高效环境修复材料.然而,纳米零价铁及其复合材料在应用过程中可进入环境,对环境及生态系统存在潜在风险.因此,为充分评估其应用对水环境的潜在危害,本文以蛋白核小球藻为受试生物,研究了负载型纳米零价铁(supported nanoscale zero-valent iron)D201-ZVI的藻类毒性及其影响因素.结果表明,负载型D201-ZVI可以显著降低nZVI生物毒性,在pH=6~10的范围内毒性效应会随pH的增加而减弱,共存污染物Cr(Ⅵ)及磺胺甲噁唑(sulfamethoxazole,SMX)均会增加D201-ZVI对蛋白核小球藻的生长抑制作用.D201-ZVI在环境中的老化作用可以减弱其生物毒性,且其毒性作用会随着暴露时间的延长而逐渐消失.D201-ZVI是一种对生物及环境安全友好的新型材料.  相似文献   

8.
纳米零价铁(nZVI)尺寸小、比表面积大、表面能高、还原性强,对环境污染物具有良好的去除效果,常用于土壤及水体修复领域.而nZVI的上述特性使其在含氧环境介质中易发生氧化现象,导致物理化学性质发生变化并影响污染物的去除.本文综述了nZVI在不同环境介质中氧化后物理化学性质演变研究进展,包括nZVI制备方法及特性综述、nZVI氧化导致的结构组成和性质的演变、氧化后对重金属去除机理探讨和对环境的毒性变化,并对nZVI氧化研究与其环境领域中的应用关系进行了展望,期待为深入研究提供理论借鉴.  相似文献   

9.
胡一帆  王文兵  仵彦卿 《环境化学》2019,38(5):1074-1081
砷是一种有毒的类金属污染元素,许多工业场地土壤与地下水发现砷严重超标.本文对20 mT弱磁场促进零价铁去除砷的效果、影响因素和机理进行了实验室研究.结果表明,当初始pH=5—9时,外加弱磁场对零价铁除砷反应动力学影响显著,尤其在pH=7时,反应动力学速率常数从0.21 s~(-1)升高到1.14 s~(-1),增大了443%;2 h内去除率由30.9%提升至89.1%,提高了189%.在初始pH=7,更小粒径(5—9μm)的零价铁条件下,弱磁场促进零价铁除砷的效果更显著.由反应后剩余固体的SEM图可知,外加弱磁场下,零价铁颗粒表面的腐蚀产物明显增多.XPS分析结果表明,弱磁场环境下更多的氧气参与反应,促进了零价铁的腐蚀,生成更多的铁氧化物和氢氧化物,从而加速了砷在零价铁及其氧化物、氢氧化物表面的吸附和共沉淀.弱磁场可以显著促进零价铁对砷的去除,且无需外加能源和药剂投入,绿色环保,具有良好的发展前景.  相似文献   

10.
将零价铁(ZVI)分别与活性炭,石墨,碳纤维和碳纳米管按照质量比10:1组成电偶腐蚀体系用于水中As(Ⅴ)去除,结果显示零价铁/活性炭组合的去除效果略高于其它组合.XRD测试表明,组合体系中零价铁腐蚀的主要反应产物为纤铁矿,磁铁矿/磁赤铁矿.对零价铁阳极/活性炭阴极不同质量比例的研究表明,1:1时效果最佳.随着电解质浓度升高,As(Ⅴ)去除效率增大,在0.03 mol·1-1 NaCl电解质条件下,初始As(Ⅴ)为5 mg·1-1时,零价铁/活性炭组合与As(Ⅴ)反应2.5 h后,As(Ⅴ)的去除率达到100%.SO2-4,NO-3,CO2-3,SiO4-4,PO3-4等共存阴离子,以及腐殖酸对零价铁/活性炭组合去除As(Ⅴ)影响的研究结果表明,CO2-3,PO3-4和腐殖酸对As(Ⅴ)的去除效率影响不大,SiO4-4具有一定的抑制作用,相反,SO2-4和NO-3表现为明显的促进作用.  相似文献   

11.
● nZVI, S-nZVI, and nFeS were systematically compared for Cd(II) removal. ● Cd(II) removal by nZVI involved coprecipitation, complexation, and reduction. ● The predominant reaction for Cd(II) removal by S-nZVI and nFeS was replacement. ● A simple pseudo-second-order kinetic can adequately fit Fe(II) dissolution. Cadmium (Cd) is a common toxic heavy metal in the environment. Taking Cd(II) as a target contaminant, we systematically compared the performances of three Fe-based nanomaterials (nano zero valent iron, nZVI; sulfidated nZVI, S-nZVI; and nano FeS, nFeS) for Cd immobilization under anaerobic conditions. Effects of nanomaterials doses, initial pH, co-existing ions, and humic acid (HA) were examined. Under identical conditions, at varied doses or initial pH, Cd(II) removal by three materials followed the order of S-nZVI > nFeS > nZVI. At pH 6, the Cd(II) removal within 24 hours for S-nZVI, nFeS, and nZVI (dose of 20 mg/L) were 93.50%, 89.12% and 4.10%, respectively. The fast initial reaction rate of nZVI did not lead to a high removal capacity. The Cd removal was slightly impacted or even improved with co-existing ions (at 50 mg/L or 200 mg/L) or HA (at 2 mg/L or 20 mg/L). Characterization results revealed that nZVI immobilized Cd through coprecipitation, surface complexation, and reduction, whereas the mechanisms for sulfidated materials involved replacement, coprecipitation, and surface complexation, with replacement as the predominant reaction. A strong linear correlation between Cd(II) removal and Fe(II) dissolution was observed, and we proposed a novel pseudo-second-order kinetic model to simulate Fe(II) dissolution.  相似文献   

12.
Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prepared sepiolite-supported nZVI with a reaction rate that was 5 times greater than that of the conventionally prepared nZVI because of its high surface area and reactivity. The degradation of BDE-209 occurred in a stepwise debromination manner, which followed pseudo-first-order kinetics. The removal efficiency of BDE-209 increased with increasing dosage of sepiolite-supported nZVI particles and decreasing pH, and the efficiency decreased with increasing initial BDE-209 concentrations. The presence of tetrahydrofuran (THF) as a cosolvent at certain volume fractions in water influenced the degradation rate of sepiolite-supported nZVI. Debromination pathways of BDE-209 with sepiolite-supported nZVI were proposed based on the identified reaction intermediates, which ranged from nona- to mono-brominated diphenylethers (BDEs) under acidic conditions and nona- to penta-BDEs under alkaline conditions. Adsorption on sepiolite-supported nZVI particles also played a role in the removal of BDE-209. Our findings indicate that the particles have potential applications in removing environmental pollutants, such as halogenated organic contaminants.  相似文献   

13.
Side effects of chemical technologies to remediate hazardous heavy metals paved the way to green phyto-technologies. The present research investigated the effectiveness of wetland plants Lemna minor (duckweed), Azolla pinnata (water fern), and Eichhornia crassipes (water hyacinth) pertaining to synchronised removal of heavy metals (Fe, Zn, Cu, Cr, and Cd) from a Ramsar site of an Indo-Burma global biodiversity hot spot region. These plants were grown at different concentrations (1.0, 2.0, and 5.0?mg/L) of metals in microcosm investigation. To this end, the result indicated high removal (>90%) of different metals during 15 days of the experiment. Furthermore, maximum removal was noted on the 12th day of the experiment. Also, results revealed that E. crassipes was the most efficient for the removal of heavy metals followed by L. minor and A. pinnata. Results from analysis confirmed the accumulation of metals within the macrophytes and a corresponding decrease of metals in the wastewater. Significant correlations between metal concentration, water, and wetland plants were obtained. To this end, wetland plants accumulated heavy metals within their tissues, leading to physiological/biochemical alterations. Selected plants exhibited a wide range of stress tolerance to all of the metals and therefore might be utilised for eco-removal of heavy metals from contaminated water. Finally, issues of phytosynthesis of nanoparticles, phytomining, and bioenergy have been critically discussed to attain a sustainability paradigm in the use of phyto-technologies for a green future in the environment sector.  相似文献   

14.
As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni2+>Cu2+>Co2+ and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.  相似文献   

15.
• Biochar supported nanoscale zero-valent iron composite (nZVI/BC) was synthesized. • nZVI/BC quickly and efficiently removed nitrobenzene (NB) in solution. • NB removal by nZVI/BC involves simultaneous adsorption and reduction mechanism. • nZVI/BC exhibited better catalytic activity, stability and durability than nZVI. The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI.  相似文献   

16.
• Biochar enhanced the mobility and stability of zero-valent iron nanoparticles. • Particle performance was best when the BC:nZVI mass ratio was 1:1. • Bagasse-BC@nZVI removed 66.8% of BDE209. The addition of nano zero-valent iron (nZVI) is a promising technology for the in situ remediation of soil. Unfortunately, the mobility and, consequently, the reactivity of nZVI particles in contaminated areas decrease due to their rapid aggregation. In this study, we determined how nZVI particles can be stabilized using different types of biochar (BC) as a support (BC@nZVI). In addition, we investigated the transport behavior of the synthesized BC@nZVI particles in a column filled with porous media and their effectiveness in the removal of BDE209 (decabromodiphenyl ether) from soil. The characterization results of N2 Brunauer–Emmett–Teller (BET) surface area analyses, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated that nZVI was successfully loaded into the BC. The sedimentation test results and the experimental breakthrough curves indicated that all of the BC@nZVI composites manifested better stability and mobility than did the bare-nZVI particles, and the transport capacity of the particles increased with increasing flow velocity and porous medium size. Furthermore, the maximum concentrations of the column effluent for bagasse–BC@nZVI (B–BC@nZVI) were 19%, 37% and 48% higher than those for rice straw–BC@nZVI (R–BC@nZVI), wood chips–BC@nZVI (W–BC@nZVI) and corn stalks–BC@nZVI (C–BC@nZVI), respectively. A similar order was found for the removal and debromination efficiency of decabromodiphenyl ether (BDE209) by the aforementioned particles. Overall, the attachment of nZVI particles to BC significantly increased the reactivity, stability and mobility of B–BC@nZVI yielded, and nZVI the best performance.  相似文献   

17.
This paper reports the biosynthesis of nanoscale zero-valent iron (nZVI) using the extracts of Shirazi thyme leaf (Th-nZVI) and pistachio green hulls (P-nZVI). Scanning electron microscopy verified the successful synthesis of the poorly crystalline nZVI with a spherical shape and diameter in the range of 40–70 nm. According to X-ray diffraction and Fourier transform infrared spectroscope analyses, the synthesised nZVI were composed of iron oxides nanoparticles and ployphenol obtained from Shirazi thyme leaf and pistachio green hulls extracts acting as both reducing and capping agents. The phosphorus removal efficiency of Th-nZVI and P-nZVI increased with time and reached equilibrium at about 4 and 2h, respectively. Sorption of phosphorus on both sorbents was observed to be pH-dependent with maximum phosphorus removal occurring in the pH range of 2–5. Langmuir, Freundlich, Redlich–Peterson, and Temkin models were used to describe phosphorus sorption at pH 5 and maximum sorption capacity for Th-nZVI and P-nZVI was about 40.52 and 29.33?mg?g?1, respectively. Correlation coefficient (R2) and standard errors of estimate showed that the Elovich model was better than other models at describing the kinetic data. These results suggested that the synthesised nZVI with Shirazi thyme leaf and pistachio green hulls extracts could be employed as an efficient sorbent for the remediation of phosphorus from contaminated water sources.  相似文献   

18.
膨润土负载纳米铁用于降解水体中阿莫西林   总被引:2,自引:0,他引:2  
采用液相还原法合成膨润土负载纳米铁(B-nZVI)和纳米铁(nZVI)并用于降解水中的阿莫西林.实验结果表明,无论是单独nZVI还是B-nZVI都能有效降解阿莫西林.在25 mL浓度为20 mg.L-1的阿莫西林溶液中加入0.1 g的B-nZVI(其中nZVI的含量为0.05 g),溶液的初始pH值为6.65,摇床的振荡速率为250 r.min-1,反应温度为25℃,反应时间为120 min的条件下,B-nZVI对阿莫西林的降解效率高达93.1%,在此实验条件下,单独nZVI(0.05 g)对阿莫西林的降解效率只有82.3%,这是由于膨润土对nZVI起到分散作用,从而使B-nZVI的反应活性得到提高.降解动力学研究表明,B-nZVI对阿莫西林的降解过程符合表观一级反应动力学规律,相关系数R2均大于0.945.B-nZVI可多次重复用于降解阿莫西林.  相似文献   

19.
化学方法降低城市污泥的重金属含量及其前景分析   总被引:5,自引:0,他引:5  
城市污泥含有丰富的氛、磷、河和有机质,农用前景广阔。但其中重金属含量常超标而受到限制。利用化学试剂如酸、有机物、表面活性剂等与污泥中的重金属发生作用,形成溶解性的金属离子或金属-试剂络合物,再通过淋滤.可以剔除污泥中大量的重金属,使其降低到符合农用标准。本文介绍了化学方法去除污泥事金属的原理和效果,分析了影响因素,包括重金属种类、污泥特性、操作方法、剔除时间等。并对该法的应用前景进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号