首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
聚磷激酶基因在假单胞菌中的整合和表达   总被引:4,自引:1,他引:3  
杜宏伟  武俊  肖琳  杨柳燕  蒋丽娟  王晓琳 《环境科学》2009,30(10):3011-3015
为了构建高效除磷的微生物,将来源于大肠杆菌的聚磷激酶基因(ppk)插入广宿主载体pBBR1MCS-2多克隆位点区,得到质粒pBBR1MCS-2-ppk.以该质粒为模板,通过PCR扩增出携带有载体启动子和终止子序列的ppk基因,插入自杀型质粒pUTmini-Tn5中得到重组质粒pUTmini-Tn5-ppk.pUTmini-Tn5-ppk经三亲接合作用进入Pseudomonas putidaKT2440,同时mini-Tn5通过转座作用将ppk整合到宿主菌株的染色体DNA中,获得基因工程菌Pseudomonas putidaKT2440-PPK,用于表达ppk.RT-PCR结果显示,ppk基因在KT2440-PPK中得到较高量的表达,而在原始菌株KT2440中表达微弱.人工模拟污水实验结果表明,接种1 h时KT2440-PPK中聚磷含量达到最大,为3.05 mg/g,约是对照菌株KT2440的15倍.测定模拟污水中磷酸盐的含量表明,KT2440-PPK可以去除该模拟污水中90%以上的磷酸盐.  相似文献   

2.
多聚磷酸盐激酶基因在污水生物除磷中的功能   总被引:2,自引:1,他引:1  
南亚萍  周国标  袁林江 《环境科学》2017,38(4):1529-1535
为验证多聚磷酸盐激酶基因(ppk)在污水生物除磷中的功能.采用Red敲除系统,以p KD4质粒为模板,设计同源短臂,扩增外源线性DNA片段,将外源线性DNA片段电转化整合入已导入p KD46的大肠杆菌ATCC25922野生型菌株.获得重组菌E.coli/ppk~-Kan~+.将p CP20导入大肠杆菌E.coli/ppk~-Kan~+以消除卡那霉素抗性基因,通过负抗性筛选及正反向引物验证,构建无抗生素抗性的ppk基因缺失工程菌株E.coli/ppk~-Kan~-.比较工程菌株和野生型菌株的生长特性,并比较两者在缺磷诱导/富磷及多次厌氧/好氧诱导条件下的除磷性能.结果表明采用Red重组系统,通过无痕敲除,成功构建了大肠杆菌ppk基因缺失菌株E.coli/ppk~-Kan~-.敲除后的工程菌株和野生型菌株生长整体没有差异,但是4 h前对数期工程菌株生长快于野生型菌株,8 h后稳定期工程菌株生长慢于野生型菌株,表明ppk影响菌体的生长;缺磷诱导/富磷条件下,工程菌株并未表现出因ppk缺失而影响其除磷能力;经过5次厌氧/好氧诱导,两菌菌体含磷量保持在1%~2%,没有因诱导次数的增加而表现出菌体含磷量增加的趋势,也未发现厌氧有PHB好氧有聚磷颗粒生成,表明ppk基因的缺失并没有引起菌体除磷能力的下降.ppk并未表现出明显的与污水生物除磷相关的功能.  相似文献   

3.
在优化转聚磷激酶基因的大肠杆菌(BL-PPK)诱导表达条件基础上探讨了外界磷浓度对其除磷能力的影响,发现37℃细胞对数生长早期添加1.5mmol/LIPTG时聚磷激酶的表达活性和细胞除磷效率最高,同时BL—PPK对高达35mg/L的磷酸盐在6.5h内的去除效果达到99%以上,并以聚磷的形式积累在细胞内。  相似文献   

4.
适应菲胁迫的高效聚磷菌筛选及聚磷特性研究   总被引:1,自引:1,他引:0  
吴云  范丙全  隋新华  龚明波 《环境科学》2008,29(11):3172-3178
采用平板法分离菌株、蓝斑筛选和聚磷培养液除磷能力验证3种方法相结合,从太湖底泥样品中分离到2株能够利用菲的高效聚磷菌Y11和Y4-2,经形态观察、生理生化和16S rDNA鉴定为不动杆菌属(Acinetobacter sp.).通过固体平板和液体培养的方法对2株不动杆菌的环境适应能力和聚磷、除磷能力进行了测定,结果显示,2菌株的生长温度范围均为10~35℃,菌株Y11的pH范围为6~9,菌株Y4-2的pH范围为6~8;高磷浓度对菌株Y11的生长没有抑制作用,但对菌株Y4-2的生长产生一定的抑制作用;Y11和Y4-2能在以菲为唯一碳源(50 mg/L)的无机盐平板上良好生长,对菲有一定的适应性.菌株Y11和Y4-2在30℃,170 r/min,1%接种量(体积分数,菌悬液D600 =0.4)的条件下,2 mg/L磷浓度的聚磷培养液中最大聚磷率分别为96.13%和94.65%,培养液的磷浓度由2 mg/L分别降至0.08 mg/L和0.11 mg/L;5 mg/L磷浓度的聚磷培养液中最大聚磷率分别为95.94%和71.19%,培养液的磷浓度由5 mg/L分别降至0.20 mg/L和1.44 mg/L;8 mg/L磷浓度的聚磷培养液中最大聚磷率分别为71.24%和47.81%,培养液的磷浓度由8 mg/L分别降至2.30 mg/L和4.18 mg/L.使用2菌株处理云南滇池污水(磷含量为1.01 mg/L),30℃,170 r/min,4%接种量(菌悬液D600 =0.4)条件下,菌株Y11处理6 h后磷浓度由1.01 mg/L降至0.06 mg/L,菌株Y4-2处理48 h后磷浓度由1.01 mg/L降至0.06 mg/L.研究结果表明,菌株Y11和Y4-2对环境的适应性较强,均能高效、快速地降低聚磷培养液和云南滇池水体的磷浓度,不动杆菌Y11的除磷能力和环境适应性都大于菌株Y4-2,菌株Y11适用于南方和北方含磷较高的、菲污染的各种富营养化水体修复,菌株Y4-2更适用于pH8.0以下、低磷和菲污染的富营养化水体修复.  相似文献   

5.
聚磷菌生物除磷机理研究进展   总被引:2,自引:0,他引:2  
废水中过量磷酸盐是引起水体富营养化的主要原因之一,生物除磷是一项新型的水处理技术。聚磷菌生物在多聚磷酸盐的合成和降解过程中发挥重要作用。文章综述了目前聚磷菌生物除磷的生化机理,聚磷过程中涉及的主要酶类及磷酸盐转运过程相关基因的表达调控。  相似文献   

6.
高效聚磷菌Alcaligenes sp. ED-12菌株的分离鉴定及其除磷特性   总被引:1,自引:0,他引:1  
利用经典的微生物筛选方法,从福州市闽侯县上街镇高岐村某排污口淤泥中分离出1株高效聚磷菌,并结合16S rRNA基因序列分析进行了菌株鉴定.结果表明,该菌株为产碱杆菌,将其命名为Alcaligenes sp.ZGED-12.理化因素实验显示,在以乙酸钠为碳源、NH4Cl为氮源,当C/N为3∶1,pH为8.0,温度和摇床转速分别为35℃和100 r·min-1时,该菌株的生长状态最好,对磷的去除能力也最强,最高除磷率可达80%.此外,该菌株能够耐受较高浓度的磷,当磷浓度超过45 mg·L-1时会产生抑制效应.同时,以聚乙烯醇(PVA)和海藻酸盐(SA)制备了聚磷微生物固定化小球,并考察了菌球对氮磷废水的净化效果.结果表明,氮磷的去除包括固定化材料的吸附作用及微生物的生长利用和/或贮存,显示出了良好的应用前景.  相似文献   

7.
为构建一种能够高效、同时吸附水中多种重金属离子的大肠杆菌,利用融合蛋白表达技术,首先将大肠杆菌前脂蛋白信号肽Lpp、膜蛋白OmpA的N端部分氨基酸和铁硫簇组装蛋白IscA的编码基因序列进行融合,构建pET-Lpp-OmpA-IscA表达载体,将此载体导入大肠杆菌BL21菌株.在IPTG诱导下,IscA蛋白可表达于细胞膜表面.然后对IscA膜表面表达菌株对重金属的吸附能力进行评估,包括测定最大吸附容量、绘制吸附浓度依赖曲线和时间依赖曲线,以及对菌株清除工业污水中重金属的性能进行初步探索.研究结果表明,与本底对照菌株相比,IscA蛋白在细胞膜表面表达能够使菌株对水中的Cu~(2+)、Ni~(2+)、Cd~(2+)、Pb~(2+)、As~(3+)、Co~(2+)、Hg~(2+)这7种重金属的吸附能力提高2~5倍不等,并且在pH为6~8范围内保持其吸附能力基本不变.此菌株能够在30 min内将各种重金属溶液中超标5倍的金属含量降低至最大允许排放浓度以下,并且对吸附的重金属具有不同程度的回收能力和菌株再生能力.此外,该菌株能够同时吸附工业污水中的多种重金属,有效降低各种重金属含量.因此,利用膜表面表达技术对大肠杆菌进行改造,成功提高了大肠杆菌对多种重金属的吸附能力,为利用微生物治理环境重金属污染提供了良好的应用前景.  相似文献   

8.
以强化生物除磷(EBPR)污泥为研究对象,考察了不同初始乙酸浓度条件下富磷污泥厌氧发酵过程中磷及相关指标的变化,并探讨释磷机制.结果表明:初始乙酸浓度对污泥最大释磷量影响不大,(73.1±2.2)%的污泥总磷量(TP)以磷酸盐的形式释放到液相中,其主要来自聚磷的分解.聚磷的分解途径包括:1)聚磷菌(PAOs)通过吸收乙酸贮存聚β-羟基烷酸酯(PHA)的厌氧生物释磷机制释放磷酸盐;2)PAOs的维持作用导致的聚磷直接分解过程.当初始乙酸浓度不充足时,生物释磷过程受限制,聚磷以相对较慢的速率直接分解;随着乙酸浓度的增大,生物释磷速率增快,同时随之增加的PHA含量能促进污泥的水解酸化.上清液中PO43--P和Mg2+浓度在达到最大值后出现了下降的现象,其可能形成鸟粪石等沉淀.根据试验数据,本文提出了从富磷污泥中回收磷的策略,即可在厌氧消化开始前向污泥中投加一定量碳源,并在发酵24h内分离上清液进行磷回收,这样不仅可以快速大量地从上清液中回收磷并减少沉淀引起的管道堵塞等问题,还可消除高浓度磷酸盐对厌氧消化的影响.  相似文献   

9.
聚磷氯化铝溶液形态分布及转化规律   总被引:10,自引:0,他引:10       下载免费PDF全文
聚磷氯化铝是一种新型高效混凝剂,采用逐时络合比色法和酸中和速度法研究了聚磷氯化铝溶液的形态分布。结果表明,聚磷氯化铝的聚合形态为聚合铝形态与磷酸根作用新形态之和,其形态分布取决于羟比值和磷铝比值等因素,在一定的羟铝比值和磷铝比值时,聚磷氯化铝溶液可划分为5类形态,描绘出了聚磷氯化铝的形态转化规律。  相似文献   

10.
用PCR方法从嗜水气单胞菌DN322基因组中扩增出编码三苯基甲烷类染料脱色酶TpmD的基因,与表达载体pET-22b(+)连接构建成重组质粒pET22-tpmD,转化大肠杆菌BL21(DE3)得到重组工程菌株.结果表明,经IPTG诱导,脱色酶基因可高效表达,粗酶液降解结晶紫、孔雀石绿、碱性品红、灿烂绿的比活力达到569.5,386.9,516.1,273.0U/g.表达产物经Ni-NTA亲和层析法一步纯化,蛋白纯度达94.05%.对4种染料的比活力分别达到1075.3,1042.8,903.9,484.3U/g,重组质粒稳定存在于工程菌中,便于规模化发酵生产.  相似文献   

11.
微生物聚磷及其酶学调控   总被引:2,自引:0,他引:2  
本文论述了微生物细胞内磷酸盐转运机制和与聚磷相关的酶—PPK、PPX及两者对微生物聚磷行为的调控,并对今后研究重点做出展望.论文认为对于微生物聚磷的研究应从纯种微生物转移到强化生物除磷系统的混合微生物菌群,运用分子生物学和生物信息学手段分析聚磷优势菌种的PPK和PPX酶的结构特征及其在活性污泥中的变化规律,进一步深入认识生物除磷调控机理,开辟寻求提高系统除磷效率的新途径.  相似文献   

12.
缺氧反硝化除磷菌驯X菌的筛选与生长条件优化   总被引:1,自引:0,他引:1  
以SBR强化生物除磷装置污泥为研究对象,进行反硝化除磷菌的筛选,并用传统与现代分子生物学相结合手段确定其分类地位,同时采用响应面分析试验进行菌的生长条件优化. 结果表明:驯X菌的生理生化指标显示其具有缺氧反硝化除磷功能,根据细菌形态观察、培养特征、生理生化指标和16S rDNA测序结果,驯X菌与Escherichia coli最相似,同源性高达99.9%,因此驯X菌(Escherichia coli)是缺氧反硝化除磷菌. 由响应面分析可知,影响驯X菌生长的关键因素次序为ρ(碳源)>pH>ρ(氮源),二次项中ρ(碳源)2也是唯一的显著因素,ρ(碳源)对菌的生长具有决定作用;其中碳源采用乙酸钠+葡萄糖,氮源采用硫酸铵+蛋白胨. 驯X菌的最优化生长条件:ρ(碳源)为3.48g/L,ρ(氮源)为1.22 g/L,pH为8.00,此时实测的菌浊平均值为0.732.   相似文献   

13.
pH对低温除磷微生物种群与聚磷菌代谢的影响   总被引:2,自引:0,他引:2  
在5°C条件下通过运行SBR生物除磷反应器和静态实验考察pH对低温生物除磷系统的影响。pH不仅影响生物除磷反应器的性能,而且也会影响生物除磷系统的微生物种群结构。在pH为6的条件下长期运行的生物除磷系统中聚糖菌大量存在;而在中性(pH=7)和弱碱性(pH=8)条件下,聚磷菌在活性污泥中占有优势地位。静态实验结果表明,当pH在68.5之间变化时,聚磷污泥的厌氧释磷能力随pH的升高而提高。pH在68.5之间变化时,聚磷污泥的厌氧释磷能力随pH的升高而提高。pH在68之间变化时,乙酸吸收和PHB的合成能力随着pH升高而加强,当pH升高到8.5时,PHB合成能力下降,从而抑制了好氧段磷酸盐的吸收。pH为8时,生物除磷系统实现了充分的释磷和吸磷,并取得了最好的除磷效果。  相似文献   

14.
硝酸盐作为生物除磷电子受体的研究   总被引:20,自引:0,他引:20  
研究了以硝酸盐作为电子受体进行生物除磷的可能性,并比较了硝酸盐和氧作为电子受体的差异.结果表明:聚磷菌能以硝酸盐作为电子受体替代氧进行生物除磷,但若存在有机碳源会抑制缺氧段磷的吸收.缺氧条件下磷的摄取速率与硝酸盐的质量浓度有关,浓度越高速度越快.硝酸盐的连续稳定加入有利于磷的去除.与以氧为电子受体的系统相比硝酸盐系统利用PHA的效率低,缺氧系统中去除磷和消耗PHA的比例为0.63,比好氧系统中的0.83低24%;缺氧时每摩尔电子转移所吸收的磷为0.14 mol,比氧为电子受体时的0.23 mol低39.1%.   相似文献   

15.
将热活化煤矸石和镧改性煤矸石应用于封闭水体除磷固磷试验,采用16SrRNA高通量测序技术分析底泥微生态群落结构、聚磷细菌和磷代谢功能基因的变化.结果表明:镧改性煤矸石对上覆水TP的去除能力最高,稳定期上覆水TP浓度为0.023~0.028mg/L,较对照组低83.5%以上,热活化煤矸石对上覆水TP的去除能力较差,稳定期上覆水TP浓度为0.15mg/L左右,略低于对照组.热活化煤矸石和镧改性煤矸石均提高了底泥中微生物多样性,变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi)为底泥优势菌种.不同处理组底泥中聚磷细菌为Tetrasphaera和Candidatus_Accumulibacter,镧改性煤矸石显著降低了底泥中聚磷细菌的相对丰度.热活化煤矸石和镧改性煤矸石对多聚磷酸盐激酶(PPK)影响不大,但对外切聚磷酸酶(PPX)的抑制较大,热活化煤矸石抑制最大.  相似文献   

16.
将热活化煤矸石和镧改性煤矸石应用于封闭水体除磷固磷试验,采用16SrRNA高通量测序技术分析底泥微生态群落结构、聚磷细菌和磷代谢功能基因的变化.结果表明:镧改性煤矸石对上覆水TP的去除能力最高,稳定期上覆水TP浓度为0.023~0.028mg/L,较对照组低83.5%以上,热活化煤矸石对上覆水TP的去除能力较差,稳定期上覆水TP浓度为0.15mg/L左右,略低于对照组.热活化煤矸石和镧改性煤矸石均提高了底泥中微生物多样性,变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi)为底泥优势菌种.不同处理组底泥中聚磷细菌为Tetrasphaera和Candidatus_Accumulibacter,镧改性煤矸石显著降低了底泥中聚磷细菌的相对丰度.热活化煤矸石和镧改性煤矸石对多聚磷酸盐激酶(PPK)影响不大,但对外切聚磷酸酶(PPX)的抑制较大,热活化煤矸石抑制最大.  相似文献   

17.
EBPR中两类细菌PAOs和GAOs竞争的研究进展   总被引:1,自引:0,他引:1  
强化生物除磷(EBPR)工艺可以获取高效的除磷效果,已在很多污水处理厂得到广泛应用。但是大型污水处理厂在相当多的条件下,EBPR工艺也会出现周期性除磷效果的波动和不充分。针对这一难题,研究者试图采用许多手段来研究工艺中的主要微生物。文章针对典型的EBPR工艺和碳源、pH值、温度等因素对EBPR工艺中两类细菌聚磷菌(PAOs)和聚糖菌(GAOs)竞争的研究进展进行了论述,并展望了未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号