首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
厌氧流化床微生物燃料电池处理废水的产电特性   总被引:3,自引:0,他引:3  
在内径40mm、高600mm的液固厌氧流化床空气阴极单室微生物燃料电池(MFC)中,分别以污水和椰壳活性炭为液相和固相,采用间歇运行方式,考察了接种厌氧污泥条件下流化状态对电池产电性能的影响.实验结果表明,固定床条件下,电池启动迅速.初始电压为200mV,80h后电压急剧上升,100h后电池开路电压稳定在700~900mV之间.对比电压和功率密度随电流强度变化的曲线知,电池启动成功后,固定床状态下,电池最大输出功率密度随污水循环流速的增加而增大.床层颗粒由固定状态转变为流化状态后,电池最大输出功率密度由初始值120mW·m-3增加至220mW·m-3,说明流化床可以改善MFC阳极室内传质效果,加快反应速率,提高MFC产电性能.  相似文献   

2.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

3.
阴极氧还原反应(ORR)是影响微生物燃料电池(microbial fuel cell,MFC)性能的重要因素.采用双室MFC以Fe(Ⅲ)-EDTA为阴极液进行持续产电试验.结果表明,添加Fe(Ⅲ)-EDTA作为阴极液可显著加速氧还原反应速率,降低内阻,提高输出电压与功率.当阴极液中存在20.0 mmol/L的Fe(Ⅲ)-EDTA时,电池内阻仅为300 Ω,比对照降低了900 Ω,其输出电压(1 000 Ω下)与功率密度可维持在200.1 mV、 16.0 mW/m2左右,比不加的对照分别提高73.2%、 70.1%. Fe(Ⅲ)-EDTA氧化再生与持续产电试验表明,Fe(Ⅲ)-EDTA可通过曝气氧化再生、循环利用,即Fe(Ⅲ)-EDTA可作为阴极电子穿梭体加速电子至氧气的传递.Fe(Ⅲ)-EDTA首先接受阴极电子被还原成Fe(Ⅱ)-EDTA,在阴极室充分曝气条件下,Fe(Ⅱ)-EDTA将电子传递给O2同时被氧化再生成Fe(Ⅲ)-EDTA,从而完成电子从电极传递到氧气的穿梭过程,MFC得以长期稳定运行.进一步优化试验显示,Fe(Ⅲ)-EDTA作为阴极电子穿梭体强化MFC产电的适宜条件为:浓度20.0 mmol/L、pH=5.0左右.在此条件下MFC的最大功率密度达100.9 mW/m2.  相似文献   

4.
微生物燃料电池(MFC)是一种利用微生物新陈代谢作用将化学能转化为电能的装置。实验以石墨为电极材料,有机废水为阳极底物,以厌氧活性污泥为厌氧菌种,阴极室分别接种驯化后的好氧生物污泥、厌氧生物污泥、含铜废水、FeCl3溶液,构建了双室MFC并比较了4种MFC的产电性能。结果表明:连续流状态下,好氧生物阴极MFC产电性能略优于厌氧生物阴极MFC;间歇流好氧生物阴极MFC其最大电流密度是连续流好氧生物阴极MFC的1.38倍。间歇流状态下,FeCl3溶液为阴极液MFC产电性能略优于以含铜废水为阴极液的MFC。连续流状态下,以含铜废水为阴极液MFC产电性能远远高于连续流生物阴极MFC。  相似文献   

5.
以苯胺和葡萄糖为燃料的微生物燃料电池的产电特性研究   总被引:2,自引:0,他引:2  
通过构建空气阴极型双室微生物燃料电池(Microbial FueI Cell,MFC),并以苯胺和葡萄糖为燃料,研究了MFC对苯胺的降解特性及MFC 的产电性能.结果表明,在1000Ω电阻下,500mg·L-1葡萄糖为单一燃料时,MFC的最大输出电压为440mV,最大输出功率密度为215mw·m-2.当苯胺的初始浓度为...  相似文献   

6.
王琳  李雪  王丽 《环境科学研究》2017,30(7):1098-1104
为研究生物阴极在MFC(微生物燃料电池)中的应用,分别以粒径为2~4 mm的颗粒活性炭和粒径为2~4、4~8、8~12 mm的颗粒石墨为阴极基质材料,构建升流复合生物阴极型单室MFC,研究阴极基质材料的种类和粒径对MFC的产电性能和净水效能的影响.结果表明:当阳极基质材料为2~4 mm粒径的颗粒活性炭时,燃料电池中利用玻璃纤维取代离子交换膜,阴极基质材料为选用4~8 mm粒径颗粒石墨的反应柱产电量最大,为534 mV(外电阻为1 000 Ω),最大功率密度达到631.6 mW/m3,库伦效率为3.82%;阴极的pH越低越有利于阴极的产电反应;不同阴极基质材料的MFC对CODCr去除率均在80%左右,TN、NH4+-N及TP的去除率最高可分别达到79%、93%和34%.研究显示,阴极基质材料的种类和粒径对MFC的产电性影响较大,但对其净水效能的影响不大.   相似文献   

7.
该文使用单室空气阴极微生物电池,以电压、电流密度、功率密度、COD去除率、pH值等为试验指标,分别使用铂、四氧化三铁、二氧化锰作为阴极,对比其处理生活污水的去除效率和产电能力。实验结果表明,铂阴极的产电能力和处理废水效果最好,开路电压最大值达到了558.642 9 mV。当电流密度为0.604 A/m~2时功率密度达到最大值0.18 W/m~2,COD去除率为89.3%;四氧化三铁阴极MFC效果次之,二氧化锰阴极MFC效果最低。  相似文献   

8.
王林  吴可  王成业  李燕 《中国环境科学》2022,42(6):2638-2646
微生物燃料电池(microbial fuel cell,MFC)阴极的氧化还原反应能力对MFC的产电性能起着至关重要的作用,因此,本研究制备了铁酸锰/活性炭(MnFe2O4/AC)并对其进行材料学表征,研究其作为MFC空气阴极催化剂时产电和污水处理效果.研究表明,MnFe2O4和AC物质的量比为1:3时MFC电功率密度最高,达302.7mW/m².在峰值电压附近维持时间长达200h,维持时间是传统Pt/C催化剂MFC的4倍,库伦效率达到17.45%.在催化剂重复利用实验中发现,在相同的运行时间内,采用Pt/C催化剂的MFC电压下降明显,而采用MnFe2O4/AC催化剂的MFC电压基本保持稳定,证明了MnFe2O4/AC催化剂良好的循环稳定性.污水处理效果方面,MnFe2O4和AC物质的量比为1:3时处理效果最好,COD去除率达74.66%.因此,MnFe2O4/AC催化剂制备简单、价格低廉、电化学性能稳定,在提高MFC产电持久性方面具有实际意义.  相似文献   

9.
1株产电假单胞菌(Pseudomonas sp.)RE7的分离及特性研究   总被引:2,自引:0,他引:2  
微生物燃料电池(microbial fuel cell,MFC)阳极微生物的种类和作用机制对MFC的产电性能有着重要的影响.从已稳定运行1a的MFC的阳极室分离得到1株电化学活性革兰氏阴性细菌——菌株RE7,其16SrRNA基因序列与Pseudomonas aeruginosastrain CMG587有99%同源性,属于假单胞菌属(Pseudomonas sp.).利用菌株RE7构建的MFC的稳定产电和循环伏安曲线测定结果都表明,菌株RE7具有较强的电化学活性,利用菌株RE7构建的MFC的最大输出电压为352mV,相应的最大面积功率密度为69.2mW/m2,体积最大功率密度为6.2W/m3.由不同稀释比例的MFC排出液的产电效果比较可知,菌株RE7极有可能是通过自身分泌的氧化还原类物质进行电子传递.  相似文献   

10.
微生物燃料电池利用甘薯燃料乙醇废水产电的研究   总被引:3,自引:2,他引:1  
蔡小波  杨毅  孙彦平  张良  肖瑶  赵海 《环境科学》2010,31(10):2512-2517
利用空气阴极微生物燃料电池(MFC)处理甘薯燃料乙醇废水,以COD为5000mg/L的废水做底物,获得的最大电功率密度为334.1mW/m2,库仑效率(CE)为10.1%,COD去除率为92.2%.实验进一步考察了磷酸缓冲液(PBS)浓度和废水浓度对MFC产电性能的影响.PBS含量从50mmol/L增加到200mmol/L,MFC输出的最大电功率密度提高了33.4%,CE增加26.0%,但PBS对废水的COD去除率影响不大.含50mmol/LPBS的废水COD从625mg/L增加到10000mg/L,COD去除率和MFC输出的最大电功率密度在废水浓度为5000mg/L处均获得最大值,但CE值有降低的趋势,从28.9%变化至10.3%.这些结果表明,MFC可以在处理甘薯燃料乙醇废水的同时获得电能;增大PBS浓度能提高MFC的产电性能;MFC输出的最大电功率密度随废水COD增加而增大,但废水浓度过高会引起酸化使MFC产电性能下降.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

16.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

17.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

18.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

19.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

20.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号