首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

2.
Ten streams in the eastern Sierra Nevada, California, were classified into six geomorphic valley types and sampled to determine environmental and riparian vegetation conditions. The geomorphic valley types were relatively uniform geologically and hydrologically, collectively representing the range of stream environments in the region. There were significant associations between the geomorphic valley types and riparian community composition. These geomorphic-vegetation units are landscape elements which comprise the riparian ecosystems in the region. They differ in their ecological charactersitics and sensitivity to management. The system of landscape elements can be used to classify streams for the purposes of resource inventory, detailed ecological studies, and impact prediction.  相似文献   

3.
A multi‐scale soil moisture monitoring strategy for California was designed to inform water resource management. The proposed workflow classifies soil moisture response units (SMRUs) using publicly available datasets that represent soil, vegetation, climate, and hydrology variables, which control soil water storage. The SMRUs were classified, using principal component analysis and unsupervised K‐means clustering within a geographic information system, and validated, using summary statistics derived from measured soil moisture time series. Validation stations, located in the Sierra Nevada, include transect of sites that cross the rain‐to‐snow transition and a cluster of sites located at similar elevations in a snow‐dominated watershed. The SMRUs capture unique responses to varying climate conditions characterized by statistical measures of central tendency, dispersion, and extremes. A topographic position index and landform classification is the final step in the workflow to guide the optimal placement of soil moisture sensors at the local‐scale. The proposed workflow is highly flexible and can be implemented over a range of spatial scales and input datasets can be customized. Our approach captures a range of soil moisture responses to climate across California and can be used to design and optimize soil moisture monitoring strategies to support runoff forecasts for water supply management or to assess landscape conditions for forest and rangeland management.  相似文献   

4.
5.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

6.
Forest Ecosystem Services and Eco-Compensation Mechanisms in China   总被引:1,自引:0,他引:1  
Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China’s current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People’s Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China’s forestry development in sequence.  相似文献   

7.
ABSTRACT: Techniques were developed using vector and raster data in a geographic information system (GIS) to define the spatial variability of watershed characteristics in the north-central Sierra Nevada of California and Nevada and to assist in computing model input parameters. The U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter watershed model, simulates runoff for a basin by partitioning a watershed into areas that each have a homogeneous hydrologic response to precipitation or snowmelt. These land units, known as hydrologic-response units (HRU's), are characterized according to physical properties, such as altitude, slope, aspect, land cover, soils, and geology, and climate patterns. Digital data were used to develop a GIS data base and HRIJ classification for the American River and Carson River basins. The following criteria are used in delineating HRU's: (1) Data layers are hydrologically significant and have a resolution appropriate to the watershed's natural spatial variability, (2) the technique for delineating HRU's accommodates different classification criteria and is reproducible, and (3) HRU's are not limited by hydrographic-subbasin boundaries. HRU's so defined are spatially noncontiguous. The result is an objective, efficient methodology for characterizing a watershed and for delineating HRU's. Also, digital data can be analyzed and transformed to assist in defining parameters and in calibrating the model.  相似文献   

8.
This study examines the common ground between lay people and scientists regarding forest values and definitions of forest health. With the forest at Pinery Provincial Park, Ontario, as a case study, the authors compared six ecological indicators to determine which were sensitive to the multiple impacts of visitor use, deer browsing and fire suppression. Plant cover and proportion native species were sensitive to these impacts. Sapling height was greater in low deer density areas. The authors also conducted focused discussions with local interest groups, followed by qualitative data analysis. Overall, there was good convergence between scientific and public views of forests and forest health, although this may partly be due to the groups' interest in nature and the Pinery. Subjects saw a connection between their health and the state of the global and local environment, including forests. There is a need for increased awareness in the public to the necessity of managing high deer populations in parks to protect other forest components such as biodiversity. Forest managers must consider that people greatly value forests near them for mental well being. Group responses suggested that messages explicitly linking forest benefits to human health and well being may motivate people to protect forests.  相似文献   

9.
A watershed disturbance index developed by the USDA Forest Service called equivalent roaded area (ERA) was used to assess the cumulative effect from forest management in California's Sierra Nevada and Klamath mountain ranges. The basins' ERA index increased as logging and road-building occurred and then decreased over time as management ceased and vegetation recovered. A refinement of the standard index emphasized disturbances in sensitive, near-channel areas, and evaluated recovery periods of 20, 30, and 50 years. Shorter recovery periods yielded better correlations between recovering forest systems and aquatic response than the longer recovery period, as represented by ERA and diversity or dominance, respectively. The refined ERA index correlated more closely with macroinvertebrate dominance and diversity information that was available for part of the study period. A minimum ERA threshold of 5% was detected, below which no effect to the macroinvertebrate community was observed. Above this threshold, elevated ERA values were associated with a decline in macroinvertebrate diversity and an increase in dominance of the top five taxa. Use of an ERA technique that emphasizes near-channel areas and biological thresholds would contribute to the Forest Service's implementation of ecosystem management.  相似文献   

10.
The effects of a single fertilizer treatment (ammonium phosphate at 841 kg/ha, plus dolomite at 336 kg/ha) and cattle exclusion were studied in two meadows in the Sierra Nevada of California in the USA. Grazing exclusion had no effects on soil bulk density during the three years of the study. Fertilization had no effect on total soil nitrogen, soil pH, or crude protein concentrations in graminoids or forbs. Saturated soils and the development of anaerobic conditions close to the surface may have led to denitrification and the loss of usable nitrogen. Fertilization did result in short-term (one- to two-year) increases in available soild phosphorus in the drier of the two meadows, and in total phosphorus concentrations in graminoids and forbs, which were otherwise generally deficient in phosphorus. Few changes in plant species composition or production were detected, although a combination of fertilization and grazing exclusion increased forb production in the drier meadow. Based on our initial results, fertilization with phosphorus was the recommended treatment for meadow improvement projects in the central Sierra Nevada.  相似文献   

11.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   

12.
Ji L  Wang Z  Wang X  An L 《Environmental management》2011,48(6):1107-1121
According to the Seventh National Forest Inventory (2004–2008), China’s forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations—Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.  相似文献   

13.
To achieve the overall objective of restoring natural environment and sustainable resource usability, each forest management practice effect needs to be predicted using a simulation model. Previous simulation efforts were typically confined to public land. Comprehensive forest management practices entail incorporating interactions between public and private land. To make inclusion of private land into management planning feasible at the regional scale, this study uses a new method of combining Forest Inventory and Analysis (FIA) data with remotely sensed forest group data to retrieve detailed species composition and age information for the Missouri Ozark Highlands. Remote sensed forest group and land form data inferred from topography were integrated to produce distinct combinations (ecotypes). Forest types and size classes were assigned to ecotypes based on their proportions in the FIA data. Then tree species and tree age determined from FIA subplots stratified by forest type and size class were assigned to pixels for the entire study area. The resulting species composition map can improve simulation model performance in that it has spatially explicit and continuous information of dominant and associated species, and tree ages that are unavailable from either satellite imagery or forest inventory data. In addition, the resulting species map revealed that public land and private land in Ozark Highlands differ in species composition and stand size. Shortleaf pine is a co-dominant species in public land, whereas it becomes a minor species in private land. Public forest is older than private forest. Both public and private forests have deviated from historical forest condition in terms of species composition. Based on possible reasons causing the deviation discussed in this study, corresponding management avenues that can assist in restoring natural environment were recommended.  相似文献   

14.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   

15.
This article compares a range of initiatives aimed at involving people in the management of forest resources in Nepal and India. In Nepal, we focus on three categories of state-initiated programs: community forestry, the parks’ buffer zone program, and leasehold forestry. In the southern Indian state of Karnataka, we study the state-initiated Joint Forest Planning and Management program along with older institutions of leaf manure forests (Soppina betta) and historical sacred forests (Kans). We conclude that state-initiated approaches to involving communities have been limited, at best, promote standardized and relatively inflexible management practices, and lead to partial improvement in biodiversity and people’s livelihoods. When management is initiated and owned by the community, as in the case of sacred groves in India, and when other conditions are appropriate, communities can have the opportunity to demonstrate their capacity for putting effective and adaptive conservation practices in place.  相似文献   

16.
Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1–65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and “sensitive” species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.  相似文献   

17.
ABSTRACT: Daily‐to‐weekly discharge during the snowmelt season is highly correlated among river basins in the upper elevations of the central and southern Sierra Nevada (Carson, Walker, Tuolumne, Merced, San Joaquin, Kings, and Kern Rivers). In many cases, the upper Sierra Nevada watershed operates in a single mode (with varying catchment amplitudes). In some years, with appropriate lags, this mode extends to distant mountains. A reason for this coherence is the broad scale nature of synoptic features in atmospheric circulation, which provide anomalous insolation and temperature forcing that span a large region, sometimes the entire western U.S. These correlations may fall off dramatically, however, in dry years when the snowpack is spatially patchy.  相似文献   

18.
Fire Management of California Shrubland Landscapes   总被引:2,自引:0,他引:2  
  相似文献   

19.
In an effort to restore predictable ecologically relevant spring snowmelt recession flow patterns in rivers regulated by dams, this study defined a methodology by which spring flow regimes can be modeled in regulated systems from the quantifiable characteristics of spring snowmelt recessions in unregulated rivers. An analysis of eight unregulated rivers across the Sierra Nevada mountain range in California found that unregulated systems behaved similarly with respect to seasonal spring patterns and recession limb curvature, and thus prescribed flows could be designed in a manner that mimics those predictable characteristics. Using the methodology to quantify spring recession flows in terms of a daily percent decrease in flow, a series of flow recession scenarios were created for application in an existing hydrodynamic model for the regulated Rubicon River. The modeling results showed that flow recessions with slow ramping rates similar to those observed in unregulated rivers (less than 10% per day) were likely to be protective of native aquatic species, such as the Foothill yellow‐legged frog, while flows that receded at greater rates would likely result in desiccation of egg masses and potential stranding of tadpoles and fry. Furthermore, recession rates of less than 10% per day provided the most spatially diverse hydraulic habitat in the modeled domain for an appropriate duration in spring to support all native species guilds and maximize aquatic biodiversity.  相似文献   

20.
As the number of proposals to divert streamflow for power production has increased in recent years, interest has grown in predicting the impacts of flow reductions on riparian vegetation. Because the extent and density of riparian vegetation depend largely on local geomorphic and hydrologic setting, site-specific geomorphic and hydrologic information is needed. This article describes methods for collecting relevant hydrologic data, and reports the results of such studies on seven stream reaches proposed for hydroelectric development in the eastern Sierra Nevada, California, USA. The methods described are: (a) preparing geomorphic maps from aerial photographs, (b) using well level records to evaluate the influence of streamflow on the riparian water table, (c) taking synoptic flow measurements to identify gaining and losing reaches, and (d) analyzing flow records from an upstream-downstream pair of gages to document seasonal variations in downstream flow losses. In the eastern Sierra Nevada, the geomorphic influences on hydrology and riparian vegetation were pronounced. For example, in a large, U-shaped glacial valley, the width of the riparian strip was highly variable along the study reach and was related to geomorphic controls, whereas the study reaches on alluvial fan deposits had relatively uniform geomorphology and riparian strip width. Flow losses of 20% were typical over reaches on alluvial fans. In a mountain valley, however, one stream gained up to 275% from geomorphically controlled groundwater contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号