首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Areas contaminated with heavy metals can pose major risks to human health and ecological environments. The aims of this study are to assess human health risk and pollution index for heavy metals in agricultural soils irrigated by effluents of stabilization ponds in Birjand, Iran. The results revealed that the levels of Cr, Mn, Zn, Fe, Cu, Cd, and Pb were in range of 70.3–149.65, 355–570, 31.15–98.45, 23,925–29,140, 22.75–25.95, 0.17–6.51, and 8.5–23.5 mg/kg in topsoils, respectively. Total hazard index values from heavy metals through three exposure routes for adults and children were 9.13E−01 and 1.10, respectively, indicating that there was non-carcinogenic risk for children. The total risk of carcinogenic metals (Cr, Cd, and Pb) through the three exposure routes for adults and children was 1.06E−04 and 9.76E−04, respectively, which indicates that the metals in the soil will not induce carcinogenic risks to these age groups. Pollution levels of heavy metals in soil samples including enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo) showed heavy metal contamination of agricultural soils. The results of the present study provide basic information about heavy metal contamination control and human health risk assessment management in the study area.  相似文献   

2.
Sludge morphology considerably affects the mechanism underlying microbial anaerobic degradation of phenol. Here, we assessed the phenol degradation rate, specific methanogenic activity, electron transport activity, coenzyme F420 concentration, and microbial community structure of five phenol-degrading sludge of varying particle sizes (i.e., < 20, 20–50, 50–100, 100–200, and > 200 μm). The results indicated an increase in phenol degradation rate and microbial community structure that distinctly correlated with an increase in sludge particle size. Although the sludge with the smallest particle size (< 20 μm) showed the lowest phenol degradation rate (9.3 mg COD·gVSS−1 day−1), its methanogenic activity with propionic acid, butyric acid, and H2/CO2 as substrates was the best, and the concentration of coenzyme F420 was the highest. The small particle size sludge did not contain abundant syntrophic bacteria or hydrogenotrophic methanogens, but contained abundant acetoclastic methanogens. Moreover, the floc sizes of the different sludge varied in important phenol-degrading bacteria and archaea, which may dominate the synergistic mechanism. This study provides a new perspective on the role of sludge floc size on the anaerobic digestion of phenol.  相似文献   

3.

Background

Although breastfeeding is the ideal way of nurturing infants, it can be a source of exposure to toxicants. This study reports the concentration of Hg, Pb and Cd in breast milk from a sample of women drawn from the general population of the Madrid Region, and explores the association between metal levels and socio-demographic factors, lifestyle habits, diet and environmental exposures, including tobacco smoke, exposure at home and occupational exposures.

Methods

Breast milk was obtained from 100 women (20 mL) at around the third week postpartum. Pb, Cd and Hg levels were determined using Atomic Absorption Spectrometry. Metal levels were log-transformed due to non-normal distribution. Their association with the variables collected by questionnaire was assessed using linear regression models. Separate models were fitted for Hg, Pb and Cd, using univariate linear regression in a first step. Secondly, multivariate linear regression models were adjusted introducing potential confounders specific for each metal. Finally, a test for trend was performed in order to evaluate possible dose-response relationships between metal levels and changes in variables categories.

Results

Geometric mean Hg, Pb and Cd content in milk were 0.53 μg L−1, 15.56 μg L−1, and 1.31 μg L−1, respectively. Decreases in Hg levels in older women and in those with a previous history of pregnancies and lactations suggested clearance of this metal over lifetime, though differences were not statistically significant, probably due to limited sample size. Lead concentrations increased with greater exposure to motor vehicle traffic and higher potato consumption. Increased Cd levels were associated with type of lactation and tended to increase with tobacco smoking.

Conclusions

Surveillance for the presence of heavy metals in human milk is needed. Smoking and dietary habits are the main factors linked to heavy metal levels in breast milk. Our results reinforce the need to strengthen national food safety programs and to further promote avoidance of unhealthy behaviors such as smoking during pregnancy.  相似文献   

4.
Concentrations of Hg, Pb, Cd, and Cr in 240 shellfish including oyster, short-necked clam, razor clam, and mud clam collected from six administrative regions in Xiamen of China were measured. The daily intakes of heavy metals through the consumption of shellfish were estimated based on both of the metal concentrations in shellfish and the consuming amounts of shellfish. In addition, the target hazard quotients (THQ) were used to evaluate the potential risk of heavy metals in shellfish on human body. Results showed that the concentrations of heavy metals in shellfish ranged at the following sequence: Cr > Cd > Pb > Hg. The concentrations of Hg and Pb in most samples were below the limits (0.3 mg?kg?1 for Hg and 0.5 mg?kg?1 for Pb) of national standard (GB 18406.4-2001) set in China. About 57 % of samples were found to contain more than 0.1 mg?kg?1 of Cd, in which the highest level was found in oyster from Xiangan with a value of 1.21 mg?kg?1. The average concentrations of Cd in oyster and mud clam samples were 0.338 and 0.369 mg?kg?1, respectively, which were significantly higher (p?<?0.05) than those in the samples of short-necked clam and razor clam. The highest concentration of Cr was found to present in short-necked clam from Jimei with a value of 10.4 mg?kg?1, but a mean value of 1.95 mg?kg?1 in all the shellfish was observed, and no significant difference was found among the different sampling regions. The calculated daily intakes of Hg, Pb, Cd, and Cr through consuming the shellfish were 0.005, 0.122, 0.137, and 1.20 μg?kg?1 day?1, respectively, which accounted for 2.19, 3.42, 13.7, and 40.1 % of the corresponding tolerable limits suggested by the Joint FAO/WHO Expert Committee on Food Additives. The THQ values of the four metals were far below 1 for most samples, except for those of Cd and Cr in the four shellfish species with the mean values of 0.132 and 0.385, respectively. The highest THQ values of Cd were observed in the species of oyster (0.719) and mud clam (0.568). But the high THQ values of Cr observed in all the four species were derived from the applied reference dose (RfD) data of Cr(VI) due to the unavailable RfD value of total Cr. The results indicate that the intakes of heavy metals by consuming shellfish collected from Xiamen of China do not present an appreciable hazard risk on human health, but attention should be paid to consuming those with relatively high THQ values, such as oyster, mud clam, and short-necked clam.  相似文献   

5.
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn?>?Cu?>?Pb?>?Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to T?u?ii de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.  相似文献   

6.
Heavy metal concentrations (Pb, Cd, and Cu) in classroom indoor dust were measured. The health risk (non-carcinogenic) of these heavy metals in classroom indoor dust to children was assessed based on United States Environmental Protection Agency health risk model. Indoor classroom dust samples were collected from 21 locations including windows, fans, and floors at a primary school in Sri Serdang, Malaysia. Classroom dust samples were processed using aqua regia method and analyzed for Pb, Cd, and Cu concentrations. The highest average heavy metal concentrations were found in windows, followed by floor and fan. Pb concentrations ranged from 34.17 μg/g to 101.87 μg/g, Cd concentrations ranged from 1.73 μg/g to 7.5 μg/g, and Cu concentrations ranged from 20.27 μg/g to 82.13 μg/g. Ventilation and cleaning process were found as the possible factors that contributed to heavy metal concentration in window, floor, and fan. Moreover, the hazard index (HI) and hazard quotient (HQ) values for heavy metals Cd and Cu were less than one. By contrast, the HI and HQ values for Pb (maximum values) were more than one, indicating potential non-carcinogenic risk to children. Long-term persistence of leaded petrol, building materials, interior paint, school located near industrial areas and major roads, as well as vehicle emission are the factors attributed to the presence of heavy metals in classroom dust. Further research under a long-term monitoring plan and actual values in a health risk model is crucial before a final decision on heavy metal exposure and its relationship to young children health risks can be made. Nevertheless, the findings of this study provide crucial evidence to include indoor dust quality in school assessment because the environmental processes and impacts of surrounding school area have health risk implications on young children.  相似文献   

7.
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.  相似文献   

8.
The oral bioaccessibility and the human health risks of As, Hg and other metals (Cu, Pb, Zn, Ni, Co, Cd, Cr, Mn, V and Fe) in urban street dusts from different land use districts in Nanjing (a mega-city), China were investigated. Both the total contents and the oral bioaccessibility estimated by the Simple Bioaccessibility Extraction Test (SBET) of the studied elements varied with street dusts from different land use districts. Cd, Zn, Mn, Pb, Hg and As showed high bioaccessibility. SBET-extractable contents of elements were significantly correlated with their total contents and the dust properties (pH, organic matter contents). The carcinogenic risk probability for As and Cr to children and adults were under the acceptable level (<1 × 10−4). Hazard Quotient values for single elements and Hazard Index values for all studied elements suggested potential non-carcinogenic health risk to children, but not to adults.  相似文献   

9.
Anthropogenic trace element emissions have declined. However, top soils all over the world remain enriched in trace elements. We investigated Pb and Cd migration in forest soils of a remote monitoring site in the Austrian limestone Alps between 1992 and 2004. Large spatial variability masked temporal changes in the mineral soil of Lithic Leptosols (Skeltic), whereas a significant reduction of Pb concentrations in their forest floors occurred. Reductions of concentrations in the less heterogeneous Cambisols (Chromic) were significant. In contrast, virtually no migration of Pb and Cd were found in Stagnosols due to their impeded drainage. Very low element concentrations (<1 μg l−1) in field-collected soil solutions using tension lysimeters (0.2 μm nylon filters) imply that migration largely occurred by preferential flow as particulate-bound species during intensive rainfall events. Our results indicate that the extent of Pb and Cd migration in soils is largely influenced by soil type.  相似文献   

10.
11.
The concentration of nine metals was measured in liver, kidney, heart, muscle, plastron, and carapace of Aspideretes gangeticus from Rasul and Baloki barrages, Pakistan. The results indicated that metal concentration were significant different among tissues of Ganges soft-shell turtles. However, higher concentrations of Co (5.12 μg/g) and Ni (1.67 μg/g) in liver, Cd (0.41 μg/g) in heart, Fe (267.45 μg/g), Cd (2.12 μg/g) and Mn (2.47 μg/g) in kidney, Cd (0.23 μg/g), Cu (2.57 μg/g), Fe (370.25 μg/g), Mn (5.56 μg/g), and Pb (8.23 μg/g) in muscle of A. gangeticus were recorded at Baloki barrage than Rasul barrage. Whereas mean concentrations of Pb (3.33 μg/g) in liver, Co (1.63 μg/g), Cu (11.32 μg/g), Pb (4.8 μg/g) and Zn (144.69 μg/g) in heart, Co (4.12 μg/g) in muscle, Ni (1.31 μg/g), Pb (2.18 μg/g), and Zn (9.78 μg/g) in carapace were recorded higher at Rasul barrage than Baloki barrage. The metals followed the trend Fe > Zn > Ni > Cu > Mn > Pb > Cr > Co > Cd. Metals of toxicological concern such as Cr, Pb, and Cd were at that level which can cause harmful effects to turtles. The results provide baseline data of heavy metals on freshwater turtle species of Pakistan.  相似文献   

12.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

13.
Mercury is a trace element that is potentially dangerous due its high toxicity and tendency to bioaccumulate in organisms. Currently, high mercury concentrations are seen in the environment especially due climate changes. Studies regarding mercury bioavailability in the southwestern Atlantic Ocean using tuna and tuna-like species are rare. The aim of the present study was to use tuna and tuna-like species (Thunnus atlanticus, Thunnus albacares, Katsuwonus pelamis, Euthynnus alletteratus, Coryphaena hippurus and Sarda sarda) as indicators of the availability of total mercury (THg) in oceanic food webs of the southwestern Atlantic Ocean. THg concentrations varied significantly among species for both muscle and liver (Kruskal–Wallis test; H5,130 = 52.7; p < 0.05; H5,130 = 50.1; p < 0.05, respectively). The lowest concentrations were found in C. hippurus (0.008 mg kg−1 wet weight in the muscle and 0.003 mg kg−1 wet weight in the liver), and the highest concentrations were reported in the muscle of T. atlanticus (1.3 mg kg−1 wet weight) and in the liver of S. sarda (2.5 mg kg−1 wet weight). The continued monitoring of tuna and tuna-like species is necessary to assist in their conservation since tuna can be sentinels of mercury pollution.  相似文献   

14.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

15.
Green-lipped mussels, Perna viridis, were collected from Kat O, Yim Tin Tsai, Ma Liu Shui and Tap Mun around Tolo Harbour and six local markets in Hong Kong (Aberdeen, Shau Kei Wan, Kowloon City, Mongkok, Yuen Long) and Shenzhen (Dongmun) between July 1994 and February 1995 and analysed for cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn). The metal concentrations of mussels collected from the study sites were Cd (0.45-1.44 microg/g), Cr (0.82-4.89 microg/g), Cu (6.02-23.99 microg/g), Ni (3.25-6.87 microg/g), Pb (2.02-4.36 microg/g) and Zn (90-135 microg/g), while those from the markets were Cd (0.27-1.44 microg/g), Cr (1.09-3.30 microg/g), Cu (9.05-17.8 microg/g), Ni (2.44-5.25 microg/g), Pb (1.17-5 microg/g) and Zn (51-103 microg/g). The metal concentrations were below the maximum permissible levels set by the Hong Kong Government. In addition, seasonal variation of metal accumulation in mussels was investigated in Yim Tin Tsai and Ma Liu Shui and a reduction in the total heavy metal concentrations during winter was noted. The non-carcinogenic hazard index of mussels collected from Tolo Harbour and from Hong Kong markets was between 0.46 and 1.36 compared with those from Shenzhen markets (0.85-1.46), which indicated a low but possible risk in consuming the mussels.  相似文献   

16.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

17.
Concentrations and bioaccessibilities of metals in exterior urban paints   总被引:2,自引:0,他引:2  
Turner A  Sogo YS 《Chemosphere》2012,86(6):614-618
Paint fragments have been collected from a variety of structures (e.g. walls, lamp posts, doors, railings) from the urban environment of Plymouth, UK, and concentrations of metals determined following acid digestion. Concentrations of most metals were highly variable and spanned several orders of magnitude among the samples (e.g. Pb = 4.5 to 36 900 μg g−1; Cr = 1.9 to 775 μg g−1; Zn = 39 to 23 500 μg g−1). The bioaccessibilities of the metals were evaluated using a physiologically based extraction test that simulates the chemical conditions of the human stomach and intestine. The bioaccessibility of a given metal was highly variable among the samples and was greater in the stomach than the intestine in some cases (e.g. Cd, Pb) and greater in the intestine in others (e.g. Co, Cr). Based on total and bioaccessible concentrations in urban paints, Pb remains the metal of greatest concern from a human health perspective.  相似文献   

18.
Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adélie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 μg g−1 dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 μg g−1 dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine.  相似文献   

19.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

20.
We quantified the contents of four toxic metals in cosmetic products that are commercially available in Jordan; 112 cosmetics, representing 10 product types, were tested in triplicate after acid digestion using inductively coupled plasma optical emission spectrometry and a mercury analyzer. Ni was most abundant, detected in 104/112 (92.8%) products (average, 2.32 ppm; and median, 1.47 ppm); 66/112 (59%) contained >1 ppm and 13/112 (11.6%), >5 ppm Ni. Cd was second-most abundant, detected in 86/112 (76.7%) products (mean, 1.71 ppm; range from< detection limit [DL] to 18.07 ppm); 16 products (14.3%) exceeded the 3 ppm suggested limit. Pb was detected in 82/112 (73.2%) products (mean, 7.8 ppm; range, < detection limit to 190.43 ppm); 20/112 (17.8%) contained more than the suggested 10 ppm limit. Hg was least-frequently detected, present in 29/112 (25.9%) and at >3 ppm in 15/112 (13.4%) products. The highest content of Hg was observed in skin lightening creams (mean concentration, 1,008 ppm). Hg was detected in 20 (62.5%) of the 32 skin lightening creams tested, of which 11/32 (34.4%) contained > 3 ppm Hg. Of the 112 cosmetics tested, 17 (15.1%) products contained Ni, Pb, Cd, and Hg; 19/112 (16.9%) contained Cd, Pb, and Hg –no product exceeded the maximum acceptable limits for all three elements, and 9/112 (8%) products exceed the maximum recommended levels for at least two elements (Hg, Cd, and Pb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号