首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Watershed vulnerability predictions for the Ozarks using landscape models   总被引:1,自引:0,他引:1  
Forty-six broad-scale landscape metrics derived from commonly used landscape metrics were used to develop potential indicators of total phosphorus (TP) concentration, total ammonia (TA) concentration, and Escherichia coli bacteria count among 244 sub-watersheds of the Upper White River (Ozark Mountains, USA). Indicator models were developed by correlating field-based water quality measurements and contemporaneous remote-sensing-based ecological metrics using partial least squares (PLS) analyses. The TP PLS model resulted in one significant factor explaining 91% of the variability in surface water TP concentrations. Among the 18 contributing landscape model variables for the TP PLS model, the proportions of a sub-watershed that are barren and in human use were key indicators of water chemistry in the associated sub-watersheds. The increased presence and reduced fragmentation of forested areas are negatively correlated with TP concentrations in associated sub-watersheds, particularly within close proximity to rivers and streams. The TA PLS model resulted in one significant factor explaining 93% of the variability in surface water TA concentrations. The eight contributing landscape model variables for the TA PLS model were among the same forest and urban metrics for the TP model, with a similar spatial gradient trend in relationship to distance from streams and rivers within a sub-watershed. The E. coli PLS model resulted in two significant factors explaining 99.7% of the variability in E. coli cell count. The 17 contributing landscape model variables for the E. coli PLS model were similar to the TP and TA models. The integration of model results demonstrates that forest, riparian, and urban attributes of sub-watersheds affect all three models. The results provide watershed managers in the Ozark Mountains with a broad-scale vulnerability prediction tool, focusing on TP, TA, and E. coli, and are being used to prioritize and evaluate monitoring and restoration efforts in the vicinity of the White River, a major tributary to the Mississippi River and Gulf of Mexico.  相似文献   

2.
Landscape Metrics for Assessment of Landscape Destruction and Rehabilitation   总被引:24,自引:1,他引:23  
This investigation tested the usefulness of geometry-based landscape metrics for monitoring landscapes in a heavily disturbed environment. Research was carried out in a 75 sq km study area in Saxony, eastern Germany, where the landscape has been affected by surface mining and agricultural intensification. Landscape metrics were calculated from digital maps (1912, 1944, 1973, 1989) for the entire study area and for subregions (river valleys, plains), which were defined using the original geology and topography of the region. Correlation and factor analyses were used to select a set of landscape metrics suitable for landscape monitoring. Little land-use change occurred in the first half of the century, but political decisions and technological developments led to considerable change later. Metrics showed a similar pattern with almost no change between 1912 and 1944, but dramatic changes after 1944. Nonparametric statistical methods were used to test whether metrics differed between river valleys and plains. Significant differences in the metrics for these regions were found in the early maps (1912, 1944), but these differences were not significant in 1973 or 1989. These findings indicate that anthropogenic influences created a more homogeneous landscape.  相似文献   

3.
Scientists have aimed at exploring land use and land cover change (LUCC) and modeling future landscape pattern in order to improve our understanding of the causes and consequences of these phenomena. This study addresses LUCC in the upper reaches of Minjiang River, China, from 1974 to 2000. Based on remotely sensed images, LUCC and landscape pattern change were assessed using cross-tabulation and landscape metrics. Then, using the CLUE-S model, changes in area of four types of land cover were predicted for two scenarios considering forest polices over the next 20 years. Results showed that forestland decreased from 1974 to 2000 due to continuous deforestation, while grassland and shrubland increased correspondingly. At the same time, the farmland and settlement land increased dramatically. Landscape fragmentation in the study area accompanied these changes. Forestland, grassland, and farmland take opposite trajectories in the two scenarios, as does landscape fragmentation. LUCC has led to ecological consequences, such as biodiversity loss and lowering of ecological carrying capacity.  相似文献   

4.
Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.  相似文献   

5.
The Chi-Chi earthquake (ML = 7.3) occurred in the central part of Taiwan on September 21, 1999. After the earthquake, typhoons Xangsane and Toraji produced heavy rainfall that fell across the eastern and central parts of Taiwan on November 2000 and July 2001. This study uses remote sensing data, landscape metrics, multivariate statistical analysis, and spatial autocorrelation to assess how earthquake and typhoons affect landscape patterns. It addresses variations of the Chenyulan watershed in Nantou County, near the earthquake’s epicenter and crossed by Typhoon Toraji. The subsequent disturbances have gradually changed landscape of the Chenyulan watershed. Disturbances of various types, sizes, and intensities, following various tracks, have various effects on the landscape patterns and variations of the Chenyulan watershed. The landscape metrics that are obtained by multivariate statistical analyses showed that the disturbances produced variously fragmented patches, interspersed with other patches and isolated from patches of the same type across the entire Chenyulan watershed. The disturbances also affected the isolation, size, and shape-complexity of patches at the landscape and class levels. The disturbances at the class level more strongly affected spatial variations in the landscape as well as patterns of grasslands and bare land, than variations in the watershed farmland and forest. Moreover, the earthquake with high magnitude was a starter to create these landscape variations in space in the Chenyulan watershed. The cumulative impacts of the disturbances on the watershed landscape pattern had existed, especially landslides and grassland in the study area, but were not always evident in space and time in landscape and other class levels.  相似文献   

6.
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.  相似文献   

7.
Dynamics of potassium leaching on a hillslope grassland soil   总被引:1,自引:0,他引:1  
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without tile drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.  相似文献   

8.
基于Markov模型的南京土地利用时空变化研究   总被引:1,自引:0,他引:1  
利用江苏2000年、2008年遥感数据,采用ArcGIS和Excel测算出南京市辖区8年土地利用的Matkov转移矩阵,从数量、空间和结构角度分析2000-2008年的土地利用变化状况,预测2016年的各类用地面积.结果表明,2000-2008年研究区的城镇和工矿交通用地扩张较快,农村居民点用地略有减少,呈集中态势;耕地、草地、林地、水域减少,未利用地减幅最大.在空间上,研究区的建设用地扩张由"同心圆状"变为"纺锤状",土地利用集中度和强度都增大.2016年预测显示,城镇用地比重达44.76%,耕地减少23.47%,其余用地基本保持前8年的变化趋势,但动态度有所减小,仅农村居民点用地减幅增大.  相似文献   

9.
This paper presents an approach to modeling land-cover change as a function of land-use change. We argue that, in order to model the link between socio-economic change and changes in forest cover in a region that is experiencing residential and recreational development and agricultural abandonment, land-use and land-cover change need to be represented as separate processes. Forest-cover change is represented here using two transition probabilities that were calculated from Landsat imagery and that, taken together, describe a Markov transition matrix between forest and non-forest over a 10-year period. Using a three-date land-use data set, compiled and interpreted from digitized parcel boundaries, and scanned aerial photography for 136 sites (c. 2500 ha) sampled from the Upper Midwest, USA, we test functional relationships between forest-cover transition probabilities, standardized to represent changes over a decade, and land-use conditions and changes within sample sites. Regression models indicated that about 60% of the variation in the average forest-cover transition probabilities (i.e. from forest to non-forest and vice versa) can be predicted using three variables: amount of agricultural land use in a site; amount of developed land use; and the amount of area increasing in development. In further analysis, time lags were evaluated, showing that agricultural abandonment had a relatively strong time-lag effect but development did not. We demonstrate an approach to using forest-cover transition probabilities to develop spatially-constrained simulations of forest-cover change. Because the simulations are based on transition probabilities that are indexed to a particular time and place, the simulations are improved over previous applications of Markov transition models. This modeling approach can be used to predict forest-cover changes as a result of socio-economic change, by linking to models that predict land-use change on the basis of exogenous human-induced drivers.  相似文献   

10.
In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. These analyses have been extended to include 75 small estuarine systems across the mid-Atlantic and southern New England regions of the USA. Because of the different characteristics and dynamics of the estuaries across these regions, adjustment for differing hydrology, sediment characteristics, and sediment origins were included in the analysis. Multiple linear regression with stepwise selection was used to develop statistical models for sediment metals, organics, and total polycyclic aromatic hydrocarbons (PAHs). The landscape metrics important for explaining the variation in sediment metals levels (R2 = 0.72) were the percent area of nonforested wetlands (negative contribution), percent area of urban land, and point source effluent volume and metals input (positive contributions). The metrics important for sediment organics levels (R2 = 0.5) and total PAHs (R2 = 0.46) were percent area of urban land (positive contribution) and percent area of nonforested wetlands (negative contribution). These models included silt-clay content (metals) or total organic C (organics, total PAHs) of sediments and grouping by estuarine hydrology, suggesting the importance of sediment characteristics and hydrology in mitigating the influence of the landscape metrics on sediment contamination levels. The overall results from this study are indicative of how statistical models can be developed relating landscape metrics to estuarine sediment contamination for distributions of land cover and point source discharges.  相似文献   

11.
It is usually inappropriate to define rectangular land areas or administrative units as the extent for quantifying landscapes that possess hierarchical structure. As a functional unit established by geophysical relationships, the watershed is one of many natural scales in the hierarchical landscape. We examined the dynamics of the Yashiro watershed of Japan at the landscape level using pattern metrics based on Landsat thematic mapper (TM) imagery from 1985 to 1998. This watershed provides important habitats for the hooded crane (Grus monachus), a vulnerable species. While its world population has remained stable, the number wintering at Yashiro has declined in recent years. Changes in landscape metrics reveal that the spatial pattern within the watershed underwent homogenization due to depopulation of local people and shifts in local energy requirements and forest management policy at Yashiro. Specific changes include: a decrease in bare land area from 6.2% to 1.0% of the landscape, increased forest cover from 69.2% to 76.1%, reduction in patch number from 1194 to 616 and enlarged mean patch size, and a decrease in total edge from 223,740 m to 158,040 m. The rate of change in landscape metrics indicates a rapid change towards homogeneity in the landscape since 1990. The temporal changes in hooded crane populations corresponded to the changes in landscape. An alternative explanation has been proposed that decline of the species is influenced by landscape dynamics affecting both habitat selection and food resources. Conservation at the watershed scale is suggested to be complementary to the current conservation measures of the species.  相似文献   

12.
本文以生态景观理论为基础,地理信息与遥感技术为支撑,对岷江流域三江交汇区三期遥感数据,1990年TM、2002年TM、2014年ETM+数据进行图像分类、景观指数提取、空间分析,同时采用面积转移矩阵统计各景观面积的转移情况,分析景观格局变化的影响因素,研究结果表明:(1)1990—2014年三江交汇区景观类型面积排序为:农田林地草地水域居民地裸地。优势景观为耕地,所占比例由72.83%下降到63.32%,面积减少了3480hm2。草地所占比例呈现波动变化,总体增加了2.81%。林地比例由15.98%上升到18.79%,增加了700hm2。居民地所占比例升高了4.1%;(2)1990年研究区内草地景观易受到外部干扰,其分布形状复杂。林地景观整体聚合度较高同时具有较低的异质性,分布通透性好、规模连续。农田分布较为分散且斑块较小。2002年农田斑块分布复杂化,同时具有聚集度高的特点。2014年研究区内农田优势地位下降。此时农田分布比较破碎并且呈现集中的态势。草地分布规模性较好、分布较为完整,但是内部存在一定的破碎性;(3)三江交汇区景观类型相互转化的主要原因:一是,退耕还林、还草政策实施,海拔超过500m的丘陵山地区域,建立生态保护区。二是,成绵乐铁路和高速路网的完善,使得三江交汇区的土地类型向建设用地转化加快,主要集中在乐山市中区和周围城镇。  相似文献   

13.
This work utilizes bird survey data, regression modeling, land-use modeling and landscape metrics to evaluate the effects of various spatial bird diversity conservation approaches on land-use allocation, land-use patterns, and biodiversity in the Shangan sub-watershed in central Taiwan. A survey of the distribution of species revealed that bird species are concentrated in the central and western parts of the sub-watershed. The results obtained using a Shannon-Weaver diversity regression model suggest that diversity of land-use increases the diversity of bird species. Logistic regression results verify that socio-economic factors determine the potential advantages of designating a particular type of land-use in certain parts of the study area. The results of land-use simulation modeling indicate that the eastern and southwestern areas of the sub-watershed will change most frequently between 2007 and 2017. Additionally, increasing the areas to protect bird diversity will effectively increase the patch size, habitat core area, edge effect and habitat connectivity. The Shannon-Weaver diversity regression model shows that protecting bird species diversity in large areas increases bird diversity. The proposed modeling approach is an effective tool that provides useful information for ecological planning and policymaking related to watersheds.  相似文献   

14.
根据1999年和2010年两期影像数据,在遥感软件EDARS IMAGINE9.1的支持下对图像进行技术处理,通过计算机自动分类方法提取土地利用信息,将石羊河流域土地利用类型分为耕地、草地、林地、建筑用地、水域及未利用地,同时利用数学模型和景观生态学理论,分析了石羊河流域土地利用变化的时空特征和格局变化。研究结果表明,1999-2010年间耕地和未利用地的面积变化最大,变化量占到总流域面积的比例分别为3.94%和2.42%;水域、林地、耕地的土地利用动态度明显,依次为3.06%,1.82%和1.12%;11年间草地、耕地和水域的流转较为剧烈,变化速率较快;11年间石羊河流域的土地利用偏离度为持续缓慢下降的趋势,下降幅度达到0.04,土地利用活动对自然景观的干预趋于缓和;景观优势度增大,景观多样性和景观均匀度有所减少,人类活动对景观格局影响明显;人口、经济因素和政策因素在短时间尺度上对土地利用变化的影响较为显著。  相似文献   

15.
We aimed to assess the impacts of recreational trampling on rare species, plant communities and landscape structure in the Iroise Biosphere Reserve (western France). Focusing on coastal grasslands, we first identified indicators discriminating human-induced short grasslands (i.e. maintained short by intensive trampling) from natural short grasslands (i.e. maintained by environmental constraints): the presence of lichens and succulent or woody species, which are known to be highly sensitive to trampling, as well as a shallow soil were good indicators of natural short grasslands. Recreational activities affected the majority of plots containing rare species, but one third of rare species (according to their habitat preference) appeared currently not threatened by recreational activities. The other rare species were found in grasslands with low trampling intensity and were not found in grasslands with greater trampling intensity. One lichen species (Teloshistes flavicans) was not affected by trampling intensity, while two plants species (Scilla verna and Ophioglossum lusitanicum) showed higher abundances when trampling was low to medium. When it occurs in natural short grasslands, tourist trampling reduced drastically plant species richness. However, when considering maritime high grasslands, we observed that species richness was higher under low trampling vs. no trampling, but decreased at higher trampling intensity. At a landscape scale, the mean annual rate of path creation was about 1.6% and tourist trampling has already completely destroyed 3.5ha of natural coastal vegetation. Trampling of maritime-high grassland has also created 31ha of short grasslands, which represent 50.8% of the whole short grassland habitat of the island. Moreover trampling affected respectively, 41% and 15% of natural short grasslands and maritime-high grasslands. One of the main suggestions for managers to minimise trampling impacts should be to protect areas of rocky soil covered by short grassland that are still non-trampled and not impacted. Fortunately, this appears compatible with a relatively free access of visitors to coastal areas, as tourists can be redirected towards maritime-high grasslands, an habitat which is less impacted by tourism in terms of affected surface, soil cover, loss of species, or presence of rare species host.  相似文献   

16.
This article describes an approach to assessing spatial and temporal land-use and land-cover changes in and adjacent to protected areas and to the measurement of landscape stability within a protected area. Methods employed include aerial photographic interpretation and GIS technology. Odum's four-compartment ecosystem model provides the conceptual framework for assessing landscape stability. The study area is a selected sample of the Upper San Pedro National Riparian Conservation Area in the high desert grassland of southeastern Arizona. Significant changes were observed in the landscape matrix and riparian ecosystem. However, when these changes were assessed in the context of Odum's model, the change was nonsignificant. Implications of the approach and potential applications in protected area management are discussed.  相似文献   

17.
The objectives of this study were to assess the biological water of the Iranian Tajan River using different metrics, i.e., a Multimetric Macroinvertebrate Index (MMI) and a traits-based method. Twenty-eight physico-chemical parameters, 10 habitat factors, and abundance of macroinvertebrates were obtained for 17 sites. The Shahid-Rajaie dam divides the Tajan River into an up- and downstream part, with different land uses. Eighteen metrics were used to represent four components of ecosystem quality, including tolerance (Hilsenhoff, SIGNAL), diversity (Margalef, Shannon–Wiener, Simpson, and Evenness), abundance (total number of taxa, individuals, Ephemeroptera, Plecoptera, Trichoptera, EPT, and Insects), and composition of assemblages (% Ephemeroptera, % Plecoptera, % Trichoptera, and % EPT Taxa). The integrated MMI was calculated by averaging the obtained scores of all indices. In the next step, we gathered information on 22 biological traits of macroinvertebrates to evaluate whether (group of) traits could be identified that are indicative for specific or general stress. Result showed a decrease in MMI from upstream (very good water quality) to downstream (bad) due to human activities. Industrial activities like pulping and papermaking operations or sand mining in the downstream part had more effects than agriculture and fish ponds in the upstream part. A redundancy analysis biplot showed the variation between the modalities of trait of macroinvertebrates and their correlation with physico-chemical parameters in Tajan River. The findings show that traits can be indicative for different kind of stress but that more effort has to be put in gathering data sets to disentangle the effect of habitat quality, pollution, and the physico-chemical properties of high- versus lowland rivers.  相似文献   

18.
通过对1989-2009年20年间景观格局的空间分布、变化特征以及变化趋势分析,揭示了造成双台子河自然保护区环境变化的主要驱动力是人类活动和社会经济发展的影响,定量计算了石油开发对研究区域景观格局变化的影响。结果显示:1989-2009年双台河口自然保护区的土地利用类型发生了很大的变化,景观破碎度明显增加,人类活动导致保护区内的土地利用和景观格局也发生了明显变化,但油田开发在总的土地利用变化中的贡献率仅为4.6%。  相似文献   

19.
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.  相似文献   

20.
Changes in agricultural policy have traceable effects on landscape aesthetics. For the catchment area of Lake Greifensee, an economic land-use model predicted land-use changes caused by agricultural policy. Three scenarios implementing different direct payment schemes show that land-use intensity will decrease by 2011 compared with the ‘reference status’ 2000.The output of the economic land-use model is explicit in space. It was assessed by the ‘naturalness’ perception factor of the method proposed by Hoisl et al. [1989. Landschaftsästhetik in der Flurbereinigung. Materialien zur Flurbereinigung—Heft 17. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, München] with regard to landscape aesthetics. Even though lower land-use intensity is generally predicted by 2011, the values of the ‘naturalness’ perception factor do not significantly improve if the payment scheme remains unchanged, or if the payment scheme is amended by incentives for specific location of the ecological compensation areas (ECAs). A significant reduction in the values of the ‘naturalness’ perception factor was found when subsidies for ECA's were cancelled. This leads us to the conclusion that in order to keep Swiss landscapes as attractive as they are at present, policy must sustain incentives for low-intensity land-use types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号