首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greenhouse gas balance for composting operations   总被引:1,自引:0,他引:1  
The greenhouse gas (GHG) impact of composting a range of potential feedstocks was evaluated through a review of the existing literature with a focus on methane (CH(4)) avoidance by composting and GHG emissions during composting. The primary carbon credits associated with composting are through CH(4) avoidance when feedstocks are composted instead of landfilled (municipal solid waste and biosolids) or lagooned (animal manures). Methane generation potential is given based on total volatile solids, expected volatile solids destruction, and CH(4) generation from lab and field incubations. For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve the equivalent of 3.1 Mg CO(2) per 1 dry Mg of feedstocks composted if feedstocks were diverted from anaerobic storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG emissions from the use of electricity and fossil fuels and through GHG emissions during composting. Greenhouse gas emissions during composting are highest for high-nitrogen materials with high moisture contents. These debits are minimal in comparison to avoidance credits and can be further minimized through the use of higher carbon:nitrogen feedstock mixtures and lower-moisture-content mixtures. Compost end use has the potential to generate carbon credits through avoidance and sequestration of carbon; however, these are highly project specific and need to be quantified on an individual project basis.  相似文献   

2.
The effects of different process temperatures (40, 55, and 67 degrees C) during composting of source-separated household waste were studied in a 200 L compost reactor at an oxygen concentration of 16%. The overall decomposition measured as carbon mineralization, decomposition of different carbon constituents, and the dynamics of nitrogen mineralization and the microbial community, are reported. Ammonia emissions at 67 degrees C were more than double those at lower temperatures, and they were lowest at 40 degrees C. The decomposition rate, measured as CO2 emission, was highest at 55 degrees C. Decomposition of crude fat was slower at 40 degrees C than at 55 and 67 degrees C. The peak in microbial biomass was largest in the run at 40 degrees C, where substantial differences were seen in the microbial community structure and succession compared to thermophilic temperatures. Biowaste composting can be optimized to obtain both a high decomposition rate and low ammonia emissions by controlling the process at about 55 degrees C in the initial, high-rate stage. To reduce ammonia emissions it seems worthwhile to reduce the temperature after an initial high-temperature stage.  相似文献   

3.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   

4.
Animal husbandry and manure treatment have been specifically documented as significant sources of methane, ammonia, nitrous oxide, and particulate matter. Although volatile organic compounds (VOCs) are also produced, much less information exists concerning their impact. We report on chemical ionization mass spectrometry and photo-acoustic spectroscopy measurements of mixing ratios of VOCs over a 2-wk measurement period in a large cowshed at the Federal Agricultural Research Centre (FAL) in Mariensee, Germany. The high time resolution of these measurements enables insight into the sources of the emissions in a typical livestock management setting. During feeding hours and solid manure removal, large mixing ratio spikes of several VOCs were observed and correlated with simultaneous methane, carbon dioxide, and ammonia level enhancements. The subsequent decay of cowshed concentration due to passive cowshed ventilation was used to model emission rates, which were dominated by ethanol and acetic acid, followed by methanol. Correlations of VOC mixing ratios with methane or ammonia were also used to calculate cowshed emission factors and to estimate potential nationwide VOC emissions from dairy cows. The results ranged from around 0.1 Gg carbon per year (1 Gg = 10(9) g) for nonanal and dimethylsulfide, several Gg carbon per year for volatile fatty acids and methanol, to over 10 Gg carbon per year of emitted ethanol. While some estimates were not consistent between the two extrapolation methods, the results indicate that animal husbandry VOC emissions are dominated by oxygenated compounds and may be a nationally but not globally significant emission to the atmosphere.  相似文献   

5.
进行猪粪和奶牛粪自然高温堆肥发酵,分别在15、25、35、50 d取样,获得了不同腐熟程度堆肥产物,分别进行了小白菜和香瓜种子发芽与田间应用试验,以期获得不同腐熟堆肥在蔬菜上施用的农学效应,旨在从堆肥农田施用的农学效应角度,为制订堆肥腐熟度标准提供科学依据。结果表明:牛粪堆肥过程中的最高温度高于猪粪,且高温期也长于猪粪;两种处理在35d有机碳含量均显著降低,全氮含量为先降低后升高趋势;两种堆肥在35d后,均达到无害化标准。不同腐熟程度堆肥对小白菜株高和主根长及香瓜苗重和主根长均没有明显抑制作用,对小白菜和香瓜出苗率、根系活力及小白菜单株鲜重和生物产量影响较大,尤其是猪粪腐熟25d,奶牛粪腐熟15d的堆肥表现出显著抑制作用。将堆肥理化参数与小白菜、香瓜生长指标进行相关分析表明:pH值、全氮含量和C/N这3种指标均与小白菜和香瓜各项生物性状无显著相关性;有机碳和DOC与各项生物性状指标均表现出显著或极显著相关性;铵/硝与小白菜和香瓜的GI和根系活力均表现极显著或显著的相关性,其结果与现行的堆肥腐熟度指标并不一致。因此,在制订堆肥腐熟度标准时,应关注堆肥产物农田施用后不同作物所表现出的不同农学效应。  相似文献   

6.
Two composts were obtained by co-composting of a concentrated depotassified beet vinasse and cotton gin waste using two different aeration systems: static aerated pile (forced aeration provided by a blower whom operated in the positive mode) and windrow (turned pile). The composting mixtures were cotton gin trash (55%) and vinasse (45%) (dry weight). In static pile, the total amount of vinasse was added at the beginning of the process whereas, in windrow two additions of vinasse were performed. Differences in temperature changes between both composting systems were found: a faster increase of temperature in the windrow (54 °C at 7 days) than in the static pile (45 °C at 21 days) was observed. Probably in the static pile system, the compaction of the substrates made difficult the correct distribution of the air inside the pile. Moreover, after the second addition of vinasse a new thermophilic phase was started in windrow. The different aeration systems and the way of addition of vinasse could cause differences in organic matter (OM) degradation and in weight (22.6% for the static pile and 26.7% for the windrow) and gas losses during the process. Nevertheless, the composts obtained by the two systems had a high fertilizer value (25.1 g kg−1 N; 3.2 g kg−1 P2O5; 21.4 g kg−1 K2O; C/N8) for compost obtained in static pile and (16.2 g kg−1 N; 3.4 g kg−1 P2O5; 16.1 g kg−1 K2O; C/N 12) for compost obtained in the windrow). A high degree of stability was reached in the final composts. Composting of vinasse with cotton gin waste serves two objectives, disposal of wastes and recycling of waste components.  相似文献   

7.
The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.  相似文献   

8.
Extracted organic C and microbial biomass were evaluated as stability parameters in 3 different ligno-cellulosic waste composts. Organic C was extracted by both water and alkali and further separated in humic-like carbon (HLC) and nonhumic carbon (NHC). Conventional humification parameters, such as humification index and degree of humification were calculated from NHC and HLC. Microbial biomass carbon (B(C)) was determined as an indicator of the degree of biochemical transformation, whereas ninhydrin reactive N (B(NIN)) was measured to obtain the stability parameter B(NIN)/N(TOT) (N(TOT), total N). The water-extracted organic C did not provide reliable information on the transformations underwent by the ligno-cellulosic wastes during composting, since its content remained almost unaltered during the whole process. In contrast, parameters based on the alkali-extracted organic C and microbial biomass clearly reflected organic matter (OM) changes during the process. There was an increase in the net amount of HLC in the alkali extracts throughout composting, especially in the first 7 to 12 wk of the process, as well as a relative enrichment of HLC with respect to NHC. Values of humification index and degree of humification in end products were consistent with an adequate level of compost stability. The stability parameter B(NIN)/N(TOT) showed to be a reliable indicator of stability in ligno-cellulosic wastes. Parameters based on the alkali-extracted C and microbial biomass clearly reflected the transformation of the OM during composting and can be used as stability parameters in ligno-cellulosic waste composts.  相似文献   

9.
Gas emissions were determined for dairy cows fed three diets formulated to represent feed ingredients typical of the Midwest, South, or West regions of the United States. Dairy cows were housed and monitored in 12 environmentally controlled rooms (4 cows diet). Two experiments were performed, representing two lactation stages (initial days in milk were 115 ± 39 d in Stage 1 and 216 ± 48 d in Stage 2). The results demonstrated that the combination of different dietary ingredients resulted in different gas emissions while maintaining similar dry matter intake (DMI) and milk yield (MY). Diet effect on ammonia (NH) emissions was more prominent in Stage 1. During Stage 1, cows fed the Midwest diet had the highest daily NH emission, corresponding to the highest crude protein (CP) concentration among the three regions. The differences in NH emissions (39.0%) were much larger than the percent difference in CP concentrations between diets (6.8%). Differences in N intake, N excretion, or milk urea N alone may not serve as a strong indicator of the potential to reduce NH emissions. Lower emissions of methane (CH) per unit DMI or per unit MY were observed for cows offered the South diet during Stage 1 as compared with that from cows offered the Midwest or West diets. No diet effect was observed for hydrogen sulfide (HS) emission per unit S intake, nor for nitrous oxide (NO) emission. The measured NH and CH emissions were comparable, but the NO emissions were much higher than those reported for tie-stall dairy barns in the literature.  相似文献   

10.
Nitrogen (N) loss during beef cattle (Bos taurus) feedlot manure composting may contribute to greenhouse gas emissions and increase ammonia (NH(3)) in the atmosphere while decreasing the fertilizer value of the final compost. Phosphogypsum (PG) is an acidic by-product of phosphorus (P) fertilizer manufacture and large stockpiles currently exist in Alberta. This experiment examined co-composting of PG (at rates of 0, 40, 70, and 140 kg PG Mg(-1) manure plus PG dry weight) with manure from feedlot pens bedded with straw or wood chips. During the 99-d composting period, PG addition reduced total nitrogen (TN) loss by 0.11% for each 1 kg Mg(-1) increment in PG rate. Available N at the end of composting was significantly higher for wood chip-bedded (2180 mg kg(-1)) than straw-bedded manure treatments (1820 mg kg(-1)). Total sulfur (TS) concentration in the final compost increased by 0.19 g kg(-1) for each 1 kg Mg(-1) increment in PG rate from 5.2 g TS kg(-1) without PG addition. Phosphogypsum (1.6 g kg(-1) P) addition had no significant effect on total phosphorus (TP) concentration of the final composts. Results from this study demonstrate the potential of PG addition to reduce overall N losses during composting. The accompanying increase in TS content has implications for use of the end-product on sulfur-deficient soils. Co-composting feedlot manure with PG may provide an inexpensive and technologically straightforward solution for managing and improving the nutrient composition of composted cattle manure.  相似文献   

11.
Stored poultry manure can be a significant source of ammonia (NH) and greenhouse gases (GHGs), including nitrous oxide (NO), methane (CH), and carbon dioxide (CO) emissions. Amendments can be used to modify physiochemical properties of manure, thus having the potential to reduce gas emissions. Here, we lab-tested the single and combined effects of addition of reed straw, zeolite, and superphosphate on gas emissions from stored duck manure. We showed that, over a period of 46 d, cumulative NH emissions were reduced by 61 to 70% with superphosphate additions, whereas cumulative NO emissions were increased by up to 23% compared with the control treatment. Reed straw addition reduced cumulative NH, NO, and CH emissions relative to the control by 12, 27, and 47%, respectively, and zeolite addition reduced cumulative NH and NO emissions by 36 and 20%, respectively. Total GHG emissions (as CO-equivalents) were reduced by up to 27% with the additions of reed straw and/or zeolite. Our results indicate that reed straw or zeolite can be recommended as amendments to reduce GHG emissions from duck manure; however, superphosphate is more effective in reducing NH emissions.  相似文献   

12.
Evaluation of municipal solid waste composting kinetics   总被引:2,自引:0,他引:2  
Most modern municipal solid waste (MSW) composting operations have emphasized the enhancement of decomposition of the organic fraction of the waste to comply with strict environmental regulations. This can be achieved once the composting process kinetics are well understood. This study examined process kinetics through experimentation with bench-scale reactors under controlled composting conditions to show the interdependence between biological, chemical and physical factors during composting of MSW. The effects of temperature, moisture content, waste particle size and carbon to nitrogen (C/N) ratio on process kinetics were evaluated. The results obtained revealed that these factors should be carefully controlled in order to achieve optimum process performance. It has been found that the organic matter degradation during composting follows a first-order kinetic model.  相似文献   

13.
To provide more efficient utilization of village wastes and agricultural residues and eliminate pollution from current practices anaerobic treatment of such wastes with methane recovery is proposed. This paper describes studies to determine the performance of anaerobic composting for such wastes.Composting of three waste types was investigated: (a) agricultural residues, (b) Village solid waste and 1:1 mixture of (a) and (b). Three 150 gallon reactors with periodic leachate recycling were used for anaerobic composting while three 50 gallon reactors produced an aerobic compost from the same wastes. Reactors were maintained for six months simulating the time between growing seasons. Volatile solids destruction ranged from 10.3 to 38.7%. Biogas production was ranged from 1350 to 1420 1 per k of volatile solids destroyed with a methane content of 55 to 70%. Leachate was monitored throughout for: pH, alkalinity, total and ammonia nitrogen, COD, TOC, total solids, volatile solids and four metals. MPN data was collected for various bacterial groups (total plate count, anaerobic cellulose decomposers, and anaerobic acid producers) to monitor increases and declines in the leachate bacterial population. Physical and chemical testing provided comparisons between finished anaerobic compost and aerobic compost from the same three waste samples.  相似文献   

14.
An extensive data survey and study of the Greek market for composts or products marketed as such was carried out in order to acquire a comprehensive image of the local situation, in view of the proposed operation of large municipal solid waste (MSW) composting facilities and EU legislation changes. Physical and chemical parameters (moisture, organic matter, electrical conductivity, pH and heavy metals), stability indicators (self-heating potential, germination index) and biological indicators (microbial population, pathogen indicators and selected pathogens) were analyzed for the assessment of product quality. Results revealed wide variations even within the same group of products, which is particularly significant for parameters directly related to environmental protection and public health. The heavy metal content ranged from levels exceeding the fairly lenient Greek standards to below the stringent limits for A+ class compost in Austria. About 25% of the composts examined met the heavy metal limits for the EU eco-label award. Salmonella spp. was not detected in any of the composts but Staphylococcus aureus and Clostridium perfringens were found in 17 and 96% of the composts respectively. Pathogen indicator microorganisms were present at levels above suggested limits in all the composts. The high variability of such important parameters in composts available on the Greek market suggests an urgent need for establishing quality assurance procedures and mechanisms in the country. Moreover, the wide range of limit values within EU member states suggests the need for developing EU compost quality standards, in order to harmonize the compost markets.  相似文献   

15.
Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.  相似文献   

16.
Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.  相似文献   

17.
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.  相似文献   

18.
The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as Mechanical Biological Treatment, Anaerobic Digestion and Composting will be paramount in achieving this strategic goal. This paper evaluates the scientific information needed to undertake an effective assessment of the potential public health risks from exposure to bioaerosols in the vicinity of commercial composting activities. Knowledge gaps currently exist in the scientific and regulatory community that limit our ability to effectively characterise source-term emissions, develop reliable dose–response data and accurately model the dispersion of bioaerosols. Consequently reliable risk estimates cannot be developed to inform the management of these potential risks. This uncertainty may prove a barrier to progress in achieving waste diversion and composting targets in Wales and the rest of the UK. A robust and extensive evidence base is required to inform the risk assessment process. This paper advocates the need for further, more focussed research into hazard characterisation of viable and non-viable organisms, improved dose–response data, exposure assessment techniques and an evaluation of the existing risk control and mitigation measures currently adopted. It is hoped that his will enable effective, timely and proportional risk management and mitigation measures to be developed that will foster the confidence required in composting technologies to achieve waste diversion targets and develop sustainable waste strategies.  相似文献   

19.
甲烷排放管控是国际石油公司推动低碳能源转型的一项重要举措,也是达成净零碳排放愿景的一个重要手段。研究发现,国内外石油公司的油气生产活动水平、甲烷排放控制水平、甲烷排放核算方法等3个方面均存在较大差异性。我国油井单井产量低,地面工程量大、工艺复杂,流程工艺中甲烷排放突出,油气系统甲烷排放水平较高,油气生产甲烷排放控制水平与国外石油公司相比尚有较大差距,与国外甲烷排放核算方法也存在较大差异性。着眼于甲烷排放管控,我国石油公司应充分衡量甲烷排放现状、生产活动水平、甲烷排放控制措施经济性和适用性等多重因素,严格控制潜在甲烷排放节点,并进一步做好甲烷排放检测、监测和数据统计工作,持续完善甲烷排放报告和核查体系。  相似文献   

20.
The compostability of degradable polymers under open windrow composting conditions is explored within this paper. Areas for consideration were the use of, and impacts of, degradable polyethylene (PE) sacks on the composting process and the quality of the finished compost product. These factors were investigated through polymer weight loss over the composting process, the amount of polymer residue and chemical contaminants in the finished compost product, the windrow temperature profiles and a bioassay to establish plant growth and germination levels using the final compost product. This trial also included a comparative study of the weight loss under composting conditions of two different types of ‘degradable’ polymer sacks currently on the European market: PE and a starch based product. Statistical analysis of the windrow temperature profiles has led to the development of a model, which can help to predict the expected trends in the temperature profiles of open compost windrows where the organic waste is kerbside collected using a degradable PE sack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号