首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.  相似文献   

2.
A study on recovery of oil from sludge containing oil using froth flotation   总被引:1,自引:0,他引:1  
Induced air flotation was used to recover oil from synthetically prepared sludge containing oil. A commercial surfactant was used as the collector and frother. The effects of various parameters, namely flotation time, initial amount of oil in the feed and the amount of surfactant used on the recovery of oil were investigated. Within the range of operating conditions studied herein, the maximum oil recovery obtained was about 55%. A detailed study of flotation kinetics based on oil recovery was carried out. It showed that the process followed first-order kinetics.  相似文献   

3.
Green sand reclamation using a fluidized bed with an attrition nozzle   总被引:1,自引:0,他引:1  
The objective of this study was to determine the technical feasibility of green sand reclamation using attrition in a gas–solid fluidized bed. Reclamation of foundry sand is becoming important as it may help solve concerns related to transportation and dumping of the used sand, and reduce production costs by recycling sand. The crucial step in green sand reclamation is the removal of small clay particles that are bound to the sand particles.For this study two different types of green sand were used and supplied by two different foundries. Tests were performed in a fluidized bed equipped with an attrition nozzle operating at pressures of either 350 or 550 kPa (50 or 80 psig). Attrition experiments for one green sand were performed on either unburned or burned (calcined) green sand, to determine the effect of prior calcination of the green sand on its reclamation potential by attrition. Calcination temperatures of over 700 °C were employed, and the results suggest that calcination facilitates the removal of clay from the green sand.Green sand was analyzed for clay and organic content, acid request, and particle size before and after attrition. Attriting calcined green sand produces the best results. Also experiments conducted at the highest attrition pressure of 550 kPa gave good results. According to the mass balance, the mass lost during the attrition process may be limited to less than 14%, and this could be considered acceptable. The volume of air required for the attrition nozzle is rather high and this may adversely affect the economics of the process.  相似文献   

4.
Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1)of LAS, kept at 30+/-2 degrees C and operated with a hydraulic retention time (HRT) of 12h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 mg l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorganisms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment.  相似文献   

5.
The effect of the surfactant template cetyltrimethylammonium bromide (CTAB) in MCM-41 on the adsorption of aniline was investigated. Various MCM-41 samples were prepared by controlling template removal using an extraction method. The samples were then used as adsorbents for the removal of aniline from aqueous solution. The results showed that the MCM-41 samples with the template partially removed (denoted as C-MCM-41) exhibited better adsorption performance than MCM-41 with the template completely removed (denoted as MCM-41). The reason for this difference may be that the C-MCM-41 samples had stronger hydrophobic properties and selectivity for aniline because of the presence of the template. The porosity and cationic sites generated by the template play an important role in the adsorption process. The optimal adsorbent with moderate template was achieved by changing the ratio of extractant; it has the potential for promising applications in the field of water pollution control.  相似文献   

6.
Surfactant soil washing can remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil, and the white rot fungus, Phanerochaete chrysosporium Burdsall in Burdsall & Eslyn, can oxidize PAHs. The objective of this study was to develop a novel bioremediation technology using a combination of abiological surfactant soil washing followed by PAH biological oxidation in soil washwater using P. chrysosporium in a rotating biological contactor (RBC) reactor. Soil used for experimentation was an 11-month aged contaminated soil spiked with a total of nine PAHs: acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo(a)pyrene, dibenz(a-h)anthracene, and benzo(ghi)perylene. After 11 months of aging, recovery percentages of high molecular weight PAHs [i.e., from chrysene to benzo(ghi)perylene] were greater than 86%, while those of low molecular weight PAHs (i.e., from acenaphthene to pyrene) were less than 19%. Total removal efficiency for any of the nine PAHs was greater than 90% using a combination of surfactant soil washing and P. chrysosporium oxidation of soil washwater in the RBC reactor when used in batch operation, and greater than 76% when used in continuous operation. The treatment of PAH-contaminated soil using a combination of surfactant soil washing and subsequent PAH removal from the resultant washwater in an RBC reactor, in the presence of immobilized P. chrysosporium, permits (i) a rapid abiological cleanup of soil for compliance with relevant soil quality standards and (ii) PAH biological removal in soil washwater for compliance with aqueous discharge standards.  相似文献   

7.
ABSTRACT

In this paper, an improved kinetics model of soot oxidation based on the traditional B-K model is employed to characterize the thermal regeneration process of diesel particulate filters (DPF). Considering the influence of specific surface area and inhibition factor on soot oxidation, the regeneration process is simulated and analyzed using the commercial FLUENT software combined with UDF method. The results show that soot particles react from the middle of the filter to both ends, and the temporal profile of soot mass in the thermal regeneration process could be divided into three sections: smooth reaction, rapid reaction, and late reaction. The regeneration time decreases with the increasing of the incoming oxygen volume fraction. When the thickness of the deposited soot layer is less than 0.1 mm, the regeneration time is prolonged as the thickness of the deposited layer decreases. When the thickness is more than 0.1 mm, the regeneration time shows the opposite trend with the thickness of the deposited layer. Meanwhile, the curve of maximum wall temperature changing with time is divided into heating, rapid-burning, and slow-burning regimes. The maximum wall temperature increases as the volume fraction of oxygen flow increases, and as the deposited layer thickness increases.  相似文献   

8.
A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L?1 aqueous solution of an acid dye), and laundry (simulated by a 50 mg L?1 aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L?1 (except in the case of the surface water for which the dosage was 2 mg L?1). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.  相似文献   

9.
ABSTRACT

Biodiesel emulsion fuel is reported as one of the most feasible options capable of generating lower NOx emission than that from fossil fuels. However, oil and water in the emulsion fuel are easily separated and unstable. The aim of the present study is to consider the production and stability of biodiesel emulsion fuel by using tetraglycerin ester (CR-310), i.e., one of lipophilic surfactant, polyglycerol polyricinoleate (PGPR) and biodiesel, i.e., Waste cooking Oil Methyl Ester (WOME) produced based on waste cooking oil. The corresponding heat rate, water content, and viscosity are measured. Emphasis is placed on the effects of water content and surfactant on biodiesel emulsions. It is found that: (i) stable emulsion fuel is obtained by adding at least 2.0% of CR-310 and is maintained over 1 month, (ii) there is no effect of water content on stable emulsion fuel if CR-310 is used over 2.0%, and (iii) the viscosity of emulsion fuels is higher than that of the biodiesel fuel and is gradually increased with an increase in the water content.  相似文献   

10.
Water extraction methods are widely used to extract phosphorus (P) from soils for both agronomic and environmental purposes. Both the presence of soil colloids in soil water filtrates, and the contribution of colloidal P to the molybdate-reactive phosphorus (MRP) concentration measured in these filtrates, are well documented. However, relatively little attention has been given to the direct disturbance by colloids of MRP measurement. The objective of this paper is to show this influence found for water extracts with a soil to solution ratio of 1:60 (v/v) (P(w)), obtained from a heavy clay soil in the Netherlands. Colloidal particles, which passed a 0.45-mum filter, caused a large overestimation of MRP. The low ionic strength of the P(w) filtrates (on average 0.64 mmol(c) L(-1)) probably caused soil dispersion and increased detachment of colloids from soil during extraction. After NaCl addition, followed by 0.45-mum filtration, MRP was on average 93% lower. This can be ascribed to flocculation of colloids and removal by filtration. A low ionic strength can thus lead to the direct disturbance by colloidal particles of MRP measurement in waters from soils sensitive to release of colloids.  相似文献   

11.
Sulfate removal from waste chemicals by precipitation   总被引:3,自引:0,他引:3  
Chemical oxidation using Fenton's reagent has proven to be a viable alternative to the oxidative destruction of organic pollutants in mixed waste chemicals, but the sulfate concentration in the treated liquor was still above the acceptable limits for effluent discharge. In this paper, the feasibility of sulfate removal from complex laboratory wastewaters using barium and calcium precipitation was investigated. The process was applied to different wastewater cases (two composite samples generated in different periods) in order to study the effect of the wastewater composition on the sulfate precipitation. The experiments were performed with raw and oxidized wastewater samples, and carried out according to the following steps: (1) evaluate the pH effect upon sulfate precipitation on raw wastewaters at pH range of 2-8; (2) conduct sulfate precipitation experiments on raw and oxidized wastewaters; and (3) characterize the precipitate yielded. At a concentration of 80 g L(-1), barium precipitation achieved a sulfate removal up to 61.4% while calcium precipitation provided over 99% sulfate removal in raw and oxidized wastewaters and for both samples. Calcium precipitation was chosen to be performed after Fenton's oxidation; hence this process configuration favors the production of higher quality precipitates. The results showed that, when dried at 105 degrees C, the precipitate is composed of hemidrate and anhydrous calcium sulfate ( approximately 99.8%) and trace metals ( approximately 0.2%: Fe, Cr, Mn, Co, Ag, Mg, K, Na), what makes it suitable for reuse in innumerous processes.  相似文献   

12.
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.  相似文献   

13.
ABSTRACT: Ion flotation is the term used to describe a process in which there is an initally homogeneous solution which becomes heterogeneous after the addition of an oppositely charged surfactant due to the reaction between the surfactant and specific ion(s); thus, insoluble complexes are formed. These insoluble complexes will then attached to the bubbles passing through the solution and thus leave in the foam phase. The performance of the continuous ion flotation process for the removal of haft lignin from water was investigated intensively using liquid flow rates, gas flow rates, feed locations and solution height as operational variables. The interrelationships among these physical parameters were studied and discussed. A dimensionless operational chart was established for process control. Results demonstrate that ion flotation is an effective process for removing lignin from water, provided that a quaternary ammonium salt, such as cetyldimethylbenzyl-ammonium chloride or the like, is used as a collector. At optimum operational conditions, higher than 0.95 fractional removal of lignin can be achieved.  相似文献   

14.
Silage bunker runoff can be a very polluting substance and is increasingly being treated by vegetative treatment areas (VTAs), but little information exists regarding nutrient removal performance of systems receiving this wastewater. Nutrient transport through the shallow subsurface of three VTAs (i.e. one VTA at Farm WNY and two VTAs at Farm CNY) in glaciated soils containing a restrictive layer (i.e., fragipan) was assessed using a mass balance approach. At Farm WNY, the mass removal of ammonium was 63%, nitrate was 0%, and soluble reactive phosphorus (SRP) was 39%. At Farm CNY, the mass removal of ammonium was 79% in the West VTA, but nitrate and SRP increased by 200% and 533%, respectively. Mass removal of ammonium was 67% in the East VTA at Farm CNY; nitrate removal was 86% and SRP removal was 88%. The East VTA received a much higher nutrient loading, which was attributed to a malfunctioning low-flow collection apparatus within the settling basin. Results demonstrate that nutrient reduction mechanisms other than vegetative uptake can be significant within VTAs. Even though increases in nitrate mass were observed, concentrations in 1.65m deep wells indicated that groundwater impairment from leaching of nitrate was not likely. These results offer one of the first evaluations of VTAs treating silage bunker runoff, and highlight the importance of capturing concentrated low flows in VTA systems.  相似文献   

15.
利用锆和氯化十六烷基三甲铵共同改性活性炭,制备一种新型去除污水中硝酸盐和磷酸盐的水处理吸附剂,并考察吸附剂加量、反应温度、pH值、共存阴离子等影响因素对吸附效果的影响。结果表明:锆-氯化十六烷基三甲铵改性活性炭(Zr-CTAC-AC)吸附剂适用于硝酸盐和磷酸盐浓度在100mg/L以下的污水,随着Zr-CTAC-AC加量的增加,硝酸盐、磷酸盐去除率逐渐增加,单位吸附量逐渐下降,Zr-CTAC-AC加量为8g/L时,硝酸盐去除率为79%,Zr-CTAC-AC加量为4.0g/L时,磷酸盐去除率可达91%,但应在较低的pH值范围内使用;反应温度对Zr-CTAC-AC的吸附效果影响不大;共存Cl-、HCO3-和SO42-可使硝酸盐的吸附率降低,但对磷酸盐吸附率影响较小;1mol/L NaCl溶液可使吸附到Zr-CTAC-AC表面的硝酸盐90.9%左右被解吸出来,1mol/L NaOH溶液可使吸附到Zr-CTAC-AC表面的磷酸盐78.4%左右被解吸出来。Zr-CTAC-AC能够有效去除污水中硝酸盐和磷酸盐,制备方法简单,且可循环利用,处理成本低。  相似文献   

16.
萃取法处理含油污泥技术研究   总被引:3,自引:0,他引:3  
采用萃取法处理新疆油田含油污泥,通过萃取剂的筛选,萃取温度、萃取剂与含油污泥质量比等因素对除油率的影响,以及萃取液放置时间对萃取剂回收率的影响等进行了实验,结果表明:自主研发的萃取剂ZZEG具有较好的除油率与回收率;较低温度时,萃取温度对除油率影响较大;除油率随萃取剂与含油污泥质量比的增加而提高;萃取液的放置时间对萃取剂的回收率无明显的影响,萃取剂回收率随分馏温度的提高而增加,分馏温度以200℃较为适宜。  相似文献   

17.
Vegetative filter strips (VFS) are commonly used best management practices for removing contaminants from runoff. Additional research is warranted to determine their efficiency and the most appropriate metrics for predicting fecal bacteria reductions. The objective of this research was to determine VFS effectiveness in removing from runoff relative to inflow rate, infiltration capacity, and flow concentration. This research also investigated the presence of in runoff from clean water runon after diluted manure runon events. A laboratory-scale VFS soil box (200 cm long, 100 cm wide, 7.5% slope) was packed with a sandy loam soil. Ten constant-flow VFS experiments were conducted with and without vegetation (8-10 cm ryegrass [ L.]) at low (20-40 cm s), medium (40-60 cm s), and high (85-120 cm s) flow rates and for a full (100 cm) or concentrated (40 cm) VFS flow width to simulate a channelizing flow condition. Two runon events were investigated for each experimental condition: (i) diluted liquid swine manure runon and (ii) clean water runon 48 h afterward. was used as an indicator of fecal contamination and was quantified by the most probable number (MPN) technique. No concentration reductions were observed based on peak outflow concentrations, and only small concentration reductions were observed based on outflow event mean concentrations. The mass reductions ranged from 22 to 71% and were strongly correlated to infiltration or runoff reduction ( = 0.88), which was dependent on the degree of flow concentration. Little to no effect of sedimentation on transport was observed, hypothesized to be due to minimum attachment to sediment particles because the bacteria originated from manure sources. Therefore, the design of VFS for bacteria removal should be based on the infiltration capacity in the VFS and should prevent concentrated flow, which limits total infiltration. The event mean concentrations in clean water runon experiments were between 10 and 100 MPN per 100 mL; therefore, under these conditions, VFS served as a source of residual from previous runon events.  相似文献   

18.
The performance of activated carbon has been investigated for the adsorption of eosin dye dissolved in water. Eosin is anionic in nature and highly toxic. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon (1.0 g/L) have been studied in batch and column mode. The equilibrium data are successfully fitted to the Freundlich adsorption isotherm. The adsorption rate data are successfully explained by a pseudo second-order kinetic model. Breakthrough curves for column adsorption have also been studied. The regeneration of spent carbon by desorbing the dye has been experimentally investigated applying a surfactant enhanced carbon regeneration (SECR) technique using both cationic and anionic surfactants. An empirical kinetic model for dye desorption from the commercial activated carbon (CAC) using different surfactant and desorption techniques, viz. change in pH, has been proposed. The comparison between the model and the experimental results is found to be satisfactory.  相似文献   

19.
The Hsinchu Science-based Industrial Park (HSIP) is the hi-tech manufacturing hub of Taiwan. Wastewater from the HSIP contains numerous nano-sized silicate particles whose size distributions peak at 2 and 90 nm. A 3-5 mg l(-1) as Al dose of polyaluminum chloride (PACl) was used in the field to coagulate these particles, but the removal efficiency was low. Laboratory scale tests indicated that although PACl coagulation removed 52% of the turbidity and 48% of the chemical oxygen demand (COD) from water, its effect on nano-particle removal was minimal. About 58% of the soluble COD was associated with colloidal Si particles. A light scattering test and transmission electron microscopy (TEM) demonstrated that the nano-particles agglomerated in approximately linear aggregates of sizes 100-300 nm. Prolonged contact between residual PACl and the nano-particles generated large aggregates with sizes of up to 10 microm and a fractal dimension of 2.24-2.63. The results presented herein should be of interest in the processing of "high-tech" wastewater that contains nanosized silica particles.  相似文献   

20.
This paper presents a hybrid technology of soil remediation based on the integration of biodegradation and electroosmosis. We employed soils with different texture (clay soil and loamy sand) containing a mixture of polycyclic aromatic hydrocarbons (PAH) present in creosote, and inoculation with a representative soil bacterium able to degrade fluorene, phenanthrene, fluoranthene, pyrene, anthracene, and benzo[a]pyrene. Two different modes of treatment were prospected: (i) inducing in soil the simultaneous occurrence of biodegradation and electroosmosis in the presence of a biodegradable surfactant, and (ii) treating the soils sequentially with electrokinetics and bioremediation. Losses of PAH due to simultaneous biodegradation and electroosmosis (induced by a continuous electric field) were significantly higher than in control cells that contained the surfactant but no biological activity or no current. The method was especially successful with loamy sand. For example, benzo[a]pyrene decreased its concentration by 50% after 7 d, whereas 22 and 17% of the compound had disappeared as a result of electrokinetic flushing and bioremediation alone, respectively. The use of periodical changes in polarity and current pulses increased by 16% in the removal of total PAH and in up to 30% of specific compounds, including benzo[a]pyrene. With the aim of reaching lower residual levels through bioremediation, an electrokinetic pretreatment was also evaluated as a way to mobilize the less bioaccessible fraction of PAH. Residual concentrations of total biodegradable PAH, remaining after bioremediation in soil slurries, were twofold lower in electrokinetically pretreated soils than in untreated soils. The results indicate that biodegradation and electroosmosis can be successfully integrated to promote the removal of PAH from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号