首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A source apportionment study was carried out to estimate the contribution of motor vehicles to ambient particulate matter (PM) in selected urban areas in the USA. Measurements were performed at seven locations during the period September 7, 2000 through March 9, 2001. Measurements included integrated PM2.5 and PM10 concentrations and polycyclic aromatic hydrocarbons (PAHs). Ambient PM2.5 and PM10 were apportioned to their local sources using the chemical mass balance (CMB) receptor model and compared with results obtained using scanning electron microscopy (SEM). Results indicate that PM2.5 components were mainly from combustion sources, including motor vehicles, and secondary species (nitrates and sulfates). PM10 consisted mainly of geological material, in addition to emissions from combustion sources. The fractional contributions of motor vehicles to ambient PM were estimated to be in the range from 20 to 76% and from 35 to 92% for PM2.5 and PM10, respectively.  相似文献   

2.
In recent years, suspended particle pollution has become a serious problem in Taiwan. The carbonaceous materials EC and OC are play important roles in various atmospheric processes. The primary OC/EC ratio approach is applied to assess the contribution of secondary organic aerosol (SOA) to the PM2.5 and PM10 mass at the Taichung harbor sampling site. The results indicated that the average EC and OC concentration were 1.06 and 6.50 μg m−3, respectively, in fine particulate. And the average EC and OC concentration were 4.04 and 40.32 μg m−3, respectively, in coarse particulate at Taichung Harbor sampling site. In addition, and the average EC/OC rations was 8.72 in fine particle, respectively, at Taichung Harbor, Taiwan during summer and autumn period of 2005. The fine particle exhibited high particulate concentrations in October, and lower concentration particulate occurred in August. And in this study OC and EC concentrations in this study are compared with those in other cities. The results of EC and OC concentration in this study are also compare with those other cities.  相似文献   

3.
为了解襄阳市秋冬季PM2.5的污染特征及来源,基于2020年11月至2021年1月在线监测数据,对PM2.5质量浓度、气象因素、化学组分、来源及潜在源区进行了分析。结果表明,襄阳市秋冬季污染天首要污染物均为PM2.5,且随污染程度加重,PM2.5与PM10质量浓度比呈上升趋势,二次颗粒物的形成对PM2.5的贡献更高。在PM2.5化学组分中,水溶性离子占比最大,随着污染程度加重,二次离子(SNA)快速增长,二次离子的生成转化是污染的重要成因。轻度、中度污染时,湿度高、风速小、气温低,有利于污染的积累,重度污染时湿度大、风速回升,有利于上游污染的输送与二次转化。PMF模型解析出襄阳市PM2.5主要来源及贡献率为二次源58.0%、工业企业源22.6%、机动车源10.7%、扬尘源8.7%。襄阳市潜在源区主要分布在河南省中北部、河北省南部、山东省西部、安徽省北部、江汉平原东部及南部区域,极少量分布在襄阳区域,长距离区域传输...  相似文献   

4.
2019年10月12日—11月25日,使用单颗粒气溶胶飞行时间质谱仪(SPAMS)在位于长沙市的湖南省生态环境厅点位进行了为期45 d的定点监测。结果表明,监测期间长沙市总体空气质量小时级别优、良天气占比为80.3%。长沙市首要污染物为PM_(2.5),其主要来源为机动车尾气源,二次无机源次之,工业工艺源排在第三位,占比分别为27.4%,21.5%和17.4%。整体来看,监测期间PM_(2.5)质量浓度的升高大多伴随着以上3种污染源颗粒物的同步升高。机动车尾气源具有明显的早高峰,工业工艺源、生物质燃烧源和餐饮源夜间占比增加。在偏东方向气团主导下,工业工艺源和燃煤源贡献最大;在东北方向气团主导下,PM_(2.5)质量浓度最高,且机动车尾气源占比最高。  相似文献   

5.
2016—2017年武汉市城区大气PM2.5污染特征及来源解析   总被引:1,自引:0,他引:1  
利用2016年1月至2017年9月湖北省环境监测中心站大气复合污染自动监测站的在线监测数据,对武汉市城区PM2.5的污染特征及主要来源进行解析。结果表明,武汉市城区PM2.5质量浓度呈现出明显的季节差异,季节变化规律为冬季>春季>秋季>夏季。水溶性离子的主要成分SO42-、NO3-和NH4+占总离子质量浓度的82.0%。PM2.5中阴离子相对阳离子较为亏损,颗粒整体呈碱性。夏季气态污染物的氧化程度较高且SO2较NO2氧化程度高。后向轨迹分析结果表明,区域传输是武汉市PM2.5的一个重要来源,在4个典型重污染阶段,武汉市分别受到局地、东北、西北及西南方向气团传输的影响。PMF模型解析出武汉市PM2.5五大主要来源及平均贡献率:扬尘22.0%、机动车排放27.7%、二次气溶胶21.6%、重油燃烧14.9%和生物质燃烧13.8%。  相似文献   

6.
The European Operational Smog (EUROS) integrated air quality modelling system has been extended to model fine particulate matter (PM). From an extended literature study, the Caltech Atmospheric Chemistry Mechanism and the Model of Aerosol Dynamics, Reaction, Ionisation and Dissolution were selected and recently coupled to EUROS. Currently, modelling of mass and chemical composition of aerosols in two size fractions (PM2.5 and PM10–2.5) is possible. The chemical composition is expressed in terms of seven components: ammonium, nitrate, sulphate, elementary carbon, primary inorganic compounds, primary organic compounds and secondary organic compounds. Calculated PM10 concentrations and chemical composition are presented for two summer months of the year 2003 (1 July to 31 August).  相似文献   

7.
The personal exposure of children aged 9 – 11 years to particulate matter (PM10 and PM2.5) was carried out between January and September 1997 in the London Borough of Barnet. Personal sampling along with home, garden and classroom microenvironmental monitoring was completed for all ten children. Each child was monitored for five days during winter, spring and summer. All children completed daily time activity diaries to provide information on any potential activities that could influence their exposure to particulate matter. Each evening a household activity questionnaire was also completed by the parents. Personal Environmental Monitors were used to sample personal exposure to PM10 and PM2.5. Harvard Impactors were used for the microenvironmental sampling of both size fractions. The children's mean personal exposure concentrations for PM10 during winter, spring and summer were 72, 54 and 35 µg/m3 respectively and for PM2.5 22, 17 and 18 µg/m3 respectively. In order to determine the potential sources of particulate matter, analysis of the Teflon filters has been undertaken. The physical characteristics of the particles have been identified using Scanning Electron Microscopy. The relationships between personal exposure concentrations and the different microenvironments will be discussed.  相似文献   

8.
我国西北典型大城市大气可吸入颗粒物浓度分布特征   总被引:7,自引:4,他引:3  
我国西北地区冬季寒冷、春季多风沙天气,空气中的可吸入颗粒物(PM10)浓度较高,利用兰州、西宁、乌鲁木齐、银川、呼和浩特等城市2000年6月~2007年12月每日浓度最高的大气主要污染物(SO2,NO2,PM10)浓度资料,研究了5个省会城市PM10分布特征。结果表明,五个城市PM10污染都较严重,PM10为主要污染物的日数每月平均超过20天。五个城市的季节分布特征类似,冬春季浓度较高,平均值都达到了国家二级污染标准,夏秋季相对低一些。其中,兰州和乌鲁木齐冬季浓度值远高于其他城市。五个城市均属煤烟沙尘型污染,但煤烟和沙尘的影响程度有所不同。  相似文献   

9.
2020年12月底,以生态旅游业为主的重庆市渝东南地区出现了一次较为罕见的PM2.5污染过程,持续时间长且污染程度重。以渝东南地区武隆区为例,应用污染特征雷达图、后向轨迹模型及潜在源污染贡献估算等方法分析了本次PM2.5污染的特征及来源,结果表明:(1)在污染前期主要受扬尘、燃煤和机动车等污染排放影响,污染源直接排放贡献较大;中、后期污染受二次颗粒物影响显著,扬尘影响也较为明显。(2)污染期间的气流轨迹均为短距离输送,轨迹主要来自东北方向(65%)。(3)除自身污染排放贡献外,渝东北地区和主城都市区是武隆区PM2.5污染的主要潜在源区,对武隆区传输贡献占比超50%。  相似文献   

10.
Continuous aerosol measurements were made at a regional background station (Mukteshwar) located in a rural Himalayan mountain terrain from December 2005 to December 2008 for a period of 3 years. The average concentrations of particulate matter less than or equal to 10 μm (PM10), particulate matter less than or equal to 2.5 μm (PM2.5) and black carbon (BC) are 46.0, 26.6 and 0.85 μg/m3 during the study period. Majority of the PM10 values lie below 100 μg/m3 while majority of the PM2.5 values lie below 30 μg/m3. It is further seen that during the monsoon months, especially July and August, the average values are comparatively low. It is also noted that the PM2.5/PM10 ratios between 0.50 and 0.75 have the maximum frequency distribution in the data set. Furthermore, the monthly mean ratio of BC to PM2.5 mass lies between 3.0 and 7.5 % during the study period. Though the average PM10 and PM2.5 concentrations during the study period are less than the respective Indian ambient air quality standards, however, they are still above the WHO guidelines and would have adverse health impacts. This shows that even in rural/background regions that are far away from major pollution sources or urban areas, the aerosol concentrations are significant and require long-term monitoring, source quantification and aerosol model simulations.  相似文献   

11.
Elevated particulate matter concentrations in urbanlocations have normally been associated with local trafficemissions. Recently it has been suggested that suchepisodes are influenced to a high degree by PM10sources external to urban areas. To further corroboratethis hypothesis, linear regression was sought betweenPM10 concentrations measured at eight urban sites inthe U.K., with particulate sulphate concentration measuredat two rural sites, for the years 1993–1997. Analysis ofthe slopes, intercepts and correlation coefficientsindicate a possible relationship between urban PM10and rural sulphate concentrations. The influences of winddirection and of the distance of the urban from the ruralsites on the values of the three statistical parametersare also explored. The value of linear regression as ananalysis tool in such cases is discussed and it is shownthat an analysis of the sign of the rate of change of theurban PM10 and rural sulphate concentrations providesa more realistic method of correlation. The resultsindicate a major influence on urban PM10 concentrations from the eastern side of the UnitedKingdom. Linear correlation was also sought using PM10 data from nine urban sites in London and nearby ruralRochester. Analysis of the magnitude of the gradients andintercepts together with episode correlation analysisbetween the two sites showed the effect of transportedPM10 on the local London concentrations. This articlealso presents methods to estimate the influence of ruraland urban PM10 sources on urban PM10 concentrations and to obtain a rough estimate of thetransboundary contribution to urban air pollution from thePM10 concentration data of the urban site.  相似文献   

12.
武汉地区沙尘天气气溶胶粒径分布特性研究   总被引:1,自引:0,他引:1  
通过利用湖北省大气复合污染自动监控预警中心的振荡天平法颗粒物监测仪、光散射法气溶胶粒径谱仪,对武汉地区一次典型沙尘天气过程中记录的不同粒径气溶胶颗粒数量浓度、相对质量浓度进行研究。结果表明,在武汉地区沙尘天气过程中,粗颗粒显著增多,而细颗粒显著减少,这与部分研究发现的沙尘天气过程中粗颗粒与细颗粒共同显著增多的结论有所不同。粒径谱仪分析显示,大于PM5颗粒的增多对粗颗粒浓度增加有显著贡献,而小于PM0.5颗粒的减少则对细颗粒浓度降低有主要贡献,这可能是武汉地区沙尘天气过程颗粒物的变化特点。  相似文献   

13.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   

14.
Monitoring of ambient PM10 (particulate matter which passes through a size selective impactor inlet with a 50% efficiency cut-off at 10 μm aerodynamic diameter) has been done at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata during November 2003 to November 2004. These sites were selected depending on the dominant anthropogenic activities. Metal constituents of atmospheric PM10 deposited on glass fibre filter paper were estimated using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM10 concentrations. The 24 h average concentrations of Cr, Zn, Pb, Cd, Ni, Mn and Fe from ninety PM10 particulate samples of Kolkata were found to be 6.9, 506.1, 79.1, 3.3, 7.4, 2.4 and 103.6 ng/m3, respectively. The 24 h average PM10 concentration exceeded national ambient air quality standard (NAAQS) as specified by central pollution control board, India at both residential (Kasba) and industrial (Cossipore) areas with mean concentration of 140.1 and 196.6 μg/m3, respectively. A simultaneous meteorology study was performed to assess the influence of air masses by wind speed, wind direction, rainfall, relative humidity and temperature. The measured toxic trace metals generally showed inverse relationship with wind speed, relative humidity and temperature. Factor analysis, a receptor modeling technique has been used for identification of the possible sources contributing to the PM10. Varimax rotated factor analysis identified four possible sources of measured trace metals comprising solid waste dumping, vehicular traffic with the influence of road dust, road dust and soil dust at residential site (Kasba), while vehicular traffic with the influence of soil dust, road dust, galvanizing and electroplating industry, and tanning industry at industrial site (Cossipore).  相似文献   

15.
利用2020年12月1日至2021年2月28日合肥市细颗粒物(PM2.5)、有机碳(OC)和元素碳(EC)等环境空气质量监测数据和气象观测数据,分析了合肥市大气PM2.5中OC和EC的污染特征,并探讨了其来源以及气象因素影响。结果表明:合肥市冬季碳质气溶胶是PM2.5中主要组分,随着污染程度的加重,碳质气溶胶的质量浓度逐步增加,但其在PM2.5中的占比先减小后增加。在以PM2.5为首要污染物的不同污染级别天气条件下,OC和EC的相关性说明不同程度下碳质气溶胶来源复杂。OC/EC表明机动车尾气和燃煤源排放是碳质气溶胶的主要来源。二次有机碳(SOC)会随着污染程度的加重而呈现升高趋势。OC和EC在冬季受温度影响较小;较大的相对湿度对OC和EC具有一定的清除作用,明显降水或连续降水的清除作用更加显著;而风速对含碳气溶胶的影响主要出现在污染天气背景下。  相似文献   

16.
基于2015年9月1日至2016年8月25日杭州城区观测点PM1、PM2.5、PM10小时浓度数据进行分析,利用HYSPLIT模型、潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法,探讨了杭州城区PM1、PM2.5、PM10时间分布特征和PM2.5潜在来源。结果表明:研究期间PM1季节平均浓度表现为冬季 > 秋季、春季 > 夏季,PM1~2.5、PM2.5~10浓度则表现为冬季 > 春季 > 秋季 > 夏季;PM1浓度日变化呈现明显的双峰现象,而PM1~2.5和PM2.5~10在同一时段均无明显浓度峰值;杭州城区PM2.5受外源输送污染具有明显的季节性变化特征,夏季、秋季杭州城区PM2.5的潜在源区主要是浙江北部、安徽东南部等,春季PM2.5的潜在源区主要是浙江中部、江苏南部等,冬季PM2.5的潜在源区主要是山东南部、江苏西南部、浙江北部、安徽南部、江西中部等地区。  相似文献   

17.
宁波PM10中有机碳和元素碳的季节变化及来源分析   总被引:5,自引:2,他引:3       下载免费PDF全文
为了探讨宁波市大气颗粒物中浓度水平与季节变化,2010年1、5、8、11月分季节采集了宁波市大气中PM10样品,在宁波连续观测了PM10以及有机碳(OC)、元素碳(EC)的浓度变化,并探讨宁波全年各季碳气溶胶污染变化特征;PM10中OC和EC相关性较好,说明OC与EC的来源相同,各采样点PM10中OC/EC的各季均值大部分超过2.0,表明宁波空气中存在一定的二次污染。宁波秋季SOC占OC含量高于其他季节。从PM10中8个碳组分丰度初步判断宁波市颗粒物中碳的主要来源是汽车尾气、道路扬尘及燃煤。  相似文献   

18.
The Fine Resolution Atmospheric Multi-pollutant Exchange Model was used to calculate the spatial distribution and chemical composition of PM10 concentrations for two geographically remote countries in Europe—the UK and Poland—for the year 2007. These countries are diverse in terms of pollutant emissions as well as climate conditions. Information on the contribution of natural and anthropogenic as well as national and imported particles in total PM10 concentrations in both countries is presented. The paper shows that the modelled national annual average PM10 concentrations, calculated for the entire country area, are similar for the UK and Poland and close to 12 μg m?3. Secondary inorganic aerosols dominate the total PM10 concentrations in Poland. Primary particulate matter has the greatest contribution to total PM10 in the UK, with large contribution of base cations. Anthropogenic sources predominate (81 %) in total PM10 concentrations in Poland, whereas natural prevail in the UK—hence, the future reduction of PM10 air concentrations by emissions reduction could be more difficult in the UK than in Poland.  相似文献   

19.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

20.
Port causes environmental and health concerns in coastal cities if its operation and development are not made environmentally compatible and sustainable. An emission inventory is necessary to assess the impact of port projects or growth in marine activity as well as to plan mitigation strategies. In this study, a detailed emission inventory of total suspended particulate (TSP) matter, respirable particulate matter (PM10), sulphur dioxide (SO2) and oxides of nitrogen (NOx) for a port having operation and construction activities in parallel is compiled. The study has been done for 1 year. Results show that the maximum contribution of emission of air pollutants in the port area was from TSP (68.5%) and the minimum was from SO2 (5.3%) to the total pollutants considered in this study. Total TSP emission from all activities of the port was 4,452 tyr???1 and PM10 emission was 903 tyr???1 in the year 2006. Re-suspension of dust from paved roads was the major contributor of TSP and PM10 in the road transport sector. Construction activities of the port had contributed 3.9% of TSP and 7.4% of PM10 to total emission of particulate matter. Of the total particulate emissions from various port activities approximately 20% of TSP could be attributed to PM10. The sectoral composition indicates that major contribution of SO2 emission in the port was from maritime sector and major contribution of NOx was from road transport sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号