首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study monitored atmospheric pollutants during high wind speed (> 7 m s−1) at two sampling sites: Taichung Harbor (TH) and Wuci traffic (WT) during March 2004 to January 2005 in central Taiwan. The correlation coefficient (R 2) between TSP, PM2.5, PM2.5−10 particle concentration vs. wind speed at the TH and WT sampling site during high wind speed (< 7 m s−1) were also displayed in this study. In addition, the correlation coefficients between TSP, PM2.5 and PM2.5−10 of ionic species vs. high wind speed were also observed. The results indicated that the correlation coefficient order was TSP > PM2.5−10 > PM2.5 for particle at both sampling sites near Taiwan strait. In addition, the concentration of Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+ were also analyzed in this study.  相似文献   

2.
Throughout August and September, 2003, wildfires burned in close proximity to Missoula, Montana, with smoke emanating from the fires impacting the valley for much of the summer. This presented the perfect opportunity to measure the levels of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) comprising ambient forest fire smoke particles impacting the Missoula Valley. An air sampler at the Montana Department of Environmental Quality's (DEQ) compliance site in Missoula measured hourly averages of PM10 throughout the fire season. Three collocated PM2.5 cyclones collected 24-h smoke samples using quartz filters and Polyurethane Foam (PUF) sorbent cartridges. From the quartz filters, concentrations of Organic and Elemental Carbon (OC/EC) were measured, while PCDD/F were measured from one set of a filter (particle phase) and PUF (vapor phase) aggregate of samples in an attempt to also investigate the different phases of PCDD/F in forest fire smoke impaired communities.Hourly PM10 concentrations peaked at 302.9 μg m−3 on August 15. The highest OC concentration (115.6 μg m−3) was measured between August 21–22, and the highest EC concentration of 10.5 μg m−3 was measured August 20–21. Measurable concentrations of PM2.5 associated PCDD/Fs were not detected from a representative aggregate sample, with the exception of small amounts of 1,2,3,4,6,7,8-heptachlorodibenzodioxin and octachlorodibenzodioxin. PM2.5 samples collected during the smoke events were composed of approximately 65% OC. However, the OC fraction of the particles collected in the smoke impaired Missoula valley was not composed of significant amounts of PCDD/F.  相似文献   

3.
Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5–10. The concentration distribution trend between TSP, PM2.5, PM2.5–10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study.  相似文献   

4.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   

5.
An ambient air quality study was undertaken in two cities (Pamplona and Alsasua) of the Province of Navarre in northern Spain from July 2001 to June 2004. The data were obtained from two urban monitoring sites. At both monitoring sites, ambient levels of ozone, NOx, and SO2 were measured. Simultaneously with levels of PM10 measured at Alsasua (using a laser particle counter), PM10 levels were also determined at Pamplona (using a beta attenuation monitor). Mean annual PM10 concentrations in Pamplona and Alsasua reached 30 and 28 μg m−3, respectively. These concentrations are typical for urban background sites in Northern Spain. By using meteorological information and back trajectories, it was found that the number of exceedances of the daily PM10 limit as well as the PM10 temporal variation was highly influenced by air masses from North Africa. Although North African transport was observed on only 9% of the days, it contributed the highest observed PM10 levels. Transport from the Atlantic Ocean was observed on 68% of the days; transport from Europe on 13%; low transport and local influences on 7%; and transport from the Mediterranean region on 3% of the days. The mean O3 concentrations were 45 and 55 μg m−3 in Pamplona and Alsasua, respectively, which were above the values reported for the main Spanish cities. The mean NO and NO2 levels were very similar in both sites (12 and 26 μg m−3, respectively). Mean SO2 levels were 8 μg m−3 in Pamplona and 5 μg m−3 in Alsasua. Hourly levels of PM10, NO and NO2 showed similar variations with the typically two coincident maximums during traffic rush hours demonstrating a major anthropogenic origin of PM10, in spite of the sporadic dust outbreaks.  相似文献   

6.
The contribution of fugitive dust from traffic to air pollution can no longer be ignored in China. In order to obtain the road dust loadings and to understand the chemical characteristics of PM10 and PM2.5 from typical road dust, different paved roads in eight districts of Beijing were selected for dust collection during the four seasons of 2005. Ninety-eight samples from 28 roads were obtained. The samples were resuspended using equipment assembled to simulate the rising process of road dust caused by the wind or wheels in order to obtain the PM10 and PM2.5 filter samples. The average road dust loading was 3.82 g m − 2, with the highest of 24.22 g m − 2 being in Hutongs in the rural–urban continuum during winter. The road dust loadings on higher-grade roads were lower than those on lower-grade roads. Attention should be paid to the pollution in the rural–urban continuum areas. The sums of element abundances measured were 16.17% and 18.50% for PM10 and PM2.5 in road dust. The average abundances of OC and EC in PM10 and PM2.5 in road dust were 11.52%, 2.01% and 12.50%, 2.06%, respectively. The abundance of elements, water-soluble ions, and OC, EC in PM10 and PM2.5 resuspended from road dust did not change greatly with seasons and road types. The soil dust, construction dust, dust emitted from burning coal, vehicle exhaust, and deposition of particles in the air were the main sources of road dust in Beijing. Affected by the application of snow-melting agents in Beijing during winter, the amount of Cl −  and Na +  was much higher during that time than in the other seasons. This will have a certain influence on roads, bridges, vegetations, and groundwater.  相似文献   

7.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

8.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

9.
This research paper aims at establishing baseline PM10 and PM2.5 concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM2.5) and coarser fractions (PM10-2.5) to PM10 fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM10 concentration was 304 μg/m3, which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM10 concentration was due to fine fraction (PM2.5) released by vehicular exhaust. The 24h average PM2.5 concentration was found 179 μg/m3, which is exceeded USEPA and EU standards of 65 and 50 μg/m3 respectively for the winter. India does not have any PM2.5 standards. The 24 h average PM10-2.5 concentrations were found 126 μg/m3. The PM2.5 constituted more than 59% of PM10 and whereas PM10-PM2.5 fractions constituted 41% of PM10. The correlation between PM10 and PM2.5 was found higher as PM2.5 comprised major proportion of PM10 fractions contributed by vehicular emissions.  相似文献   

10.
宁波PM10中有机碳和元素碳的季节变化及来源分析   总被引:5,自引:2,他引:3       下载免费PDF全文
为了探讨宁波市大气颗粒物中浓度水平与季节变化,2010年1、5、8、11月分季节采集了宁波市大气中PM10样品,在宁波连续观测了PM10以及有机碳(OC)、元素碳(EC)的浓度变化,并探讨宁波全年各季碳气溶胶污染变化特征;PM10中OC和EC相关性较好,说明OC与EC的来源相同,各采样点PM10中OC/EC的各季均值大部分超过2.0,表明宁波空气中存在一定的二次污染。宁波秋季SOC占OC含量高于其他季节。从PM10中8个碳组分丰度初步判断宁波市颗粒物中碳的主要来源是汽车尾气、道路扬尘及燃煤。  相似文献   

11.
Libby, Montana is the only PM2.5 nonattainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby’s elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0–2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0–2.5 μm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools’ indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.  相似文献   

12.
利用SPAMS 0515于2015年1月在盘锦市兴隆台空气质量自动监测点位采集PM_(2.5)样品,并分析其污染特征和来源。研究结果表明,盘锦市冬季PM_(2.5)的颗粒类型主要以OC颗粒、富钾颗粒、EC颗粒组成。其中,OC颗粒占比最高,为52.5%;PM_(2.5)污染的主要贡献源为燃煤、生物质燃烧、机动车尾气排放,占比分别为33.2%、25.7%、17.5%,特别是在PM_(2.5)质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大。  相似文献   

13.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

14.
To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m−3 with a mean of 24.3 ng m−3.An exceptionally high concentration of PAHs(∼120 ng m−3) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 μm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28–0.53 μm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 μm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.  相似文献   

15.
Ambient concentrations of PM2.5 and PM10 are of concern with respect to effects on human health and environment. Increased levels of mortality and morbidity have been associated with respirable particulate air pollution. In India, it is not yet mandatory to monitor PM2.5 levels therefore very limited information is available on PM2.5 levels. To understand the fine particle pollution and also correlate with PM10 which are monitored regularly in compliance with ambient air quality standards. This study was carried out to monitor PM2.5, PM10, and NO2 for about one year in a residential cum commercial area of Mumbai city with a view to understand their correlation. The average PM2.5 concentration at ambient and Kerbsite was 43 and 69 μg/m3. The correlation coefficients between PM2.5 and PM10 at ambient and Kerbsite were 0.83 and 0.85 respectively thus indicating that most of the PM2.5 and PM10 are from similar sources. TSP, PM10 levels exceeded Central Pollution Control Board(CPCB) standard during winter season. PM2.5 levels also exceeded 24 hourly average USEPA standard during winter season indicating unhealthy air quality.  相似文献   

16.
Aerosol samples for dry deposition and total suspend particulates (TSP) were collected from August to November of 2003 in central Taiwan. Ion chromatography was used to analyze the related water-soluble ionic species (Cl, NO3 , SO4 2−, Na+, NH4 +, K+, Mg2+ and Ca2+). The results obtained in this study indicated that the ambient air particulate mass concentrations in the daytime period (averaged 975.4 μg m−3) were higher than the nighttime period (averaged 542.1 μg m−3). And the daytime dry deposition fluxes (averaged 58.12 μg m−2 sec−1) were about 2.2 times as that of nighttime dry deposition fluxes (averaged 26.54 μg m−2 sec−1) of the downward dry deposition. The average values downward and upward of dry deposition fluxes for the weekend period were almost higher than the weekday period for either daytime or nighttime period. Furthermore, the average daytime dry deposition fluxes (averaged 26.37 μg m−2 sec−1) were also about 2.3 times as that of nighttime dry deposition fluxes (averaged 11.52 μg m−2 sec−1). Moreover, the results also indicate that SO4 2− and Ca2+ have higher average composition for total suspended particulates in the daytime period while Ca2+, SO4 2−, and Na+ have the higher average composition for total suspends particulates in the nighttime period.  相似文献   

17.
Concentrations of total aromatic hydrocarbons and extractable organic matter in the water column and sediment were determined in samples collected in the course of the last 20 years from the Salina Cruz Harbor, México, to assess the degree of organic contamination. In sediments, organic compounds accumulate in shallow areas mostly associated with extractable organic matter and fine fractions. Calculated geocumulation index and enrichment factors suggest that contamination could be derived from anthropogenic activities attributed to harbor and ship scrapping activities, as well as transboundary source. Concentration of total aromatic hydrocarbons (as chrysene equivalents) ranged from 0.01 to 534 μg l−1 in water, and from 0.10 to 2,160 μg g−1 in sediments. Total aromatic concentration of 5 μg g−1 is proposed as background concentration.  相似文献   

18.
于2019年1月27日—3月18日及2020年1月27日—3月18日对西安市细颗粒物(PM2.5)的碳组分浓度进行了在线观测,对比分析了非疫情与疫情期间各常规污染因子、气象要素、PM2.5中有机碳(OC)和元素碳(EC)的污染特征。结果表明:非疫情与疫情期间西安市的气象条件总体水平较为相近。疫情期间的二氧化硫(SO2)、臭氧(O3)浓度相对升高。重污染天气下,除PM2.5外,其他污染物浓度均降低,说明疫情管制对重污染天气污染物浓度的削弱作用明显。疫情期间,PM2.5中的OC组分浓度及占比有显著升高,与疫情期间的各类交通管制导致的机动车尾气排放量显著降低有关。另外,OC与EC的相关性较强,说明污染来源与人类日常生活有关。疫情期间西安市颗粒物中碳组分主要来自各类生物质燃烧,并且存在SOC污染,SOC在OC中的占比达到37.8%。疫情期间重污染天气下,SOC在OC中的占比达到87.5%,说明SOC对重污染天气OC的贡献较大。  相似文献   

19.
宁波市区冬季大气颗粒物及其主要组分的污染特征分析   总被引:7,自引:4,他引:3  
为了更好地研究影响宁波市区环境空气质量的污染物变化特征,于2010年1月20—30日进行了加强监测。研究结果表明,宁波市区大气中PM10和PM2.5质量浓度较高,其中PM2.5/PM10为0.5~0.85。对PM10和PM2.5采样膜分析,水溶性粒子和含碳组分分别占PM10和PM2.5质量浓度的56.7%和66.9%,其中二次污染的水溶性离子SO42-、NO3-和NH4+是PM10和PM2.5中浓度较高的离子组分;PM2.5样品中OC与EC的相关性较好,表明OC与EC的来源相对一致,可能主要来自机动车尾气的贡献;但PM10样品中OC与EC的相关性较差,表明其来源相对复杂;其中SOC的浓度占OC的13%~35%,说明宁波市区冬季导致二次污染的光化学反应不活跃。  相似文献   

20.
基于北京市PM2.5和PM10质量浓度、组分浓度以及降水数据,利用数理统计、相关性分析等方法分别从降水总量、降水时长和降水前颗粒物浓度3个角度研究降水对PM2.5、PM10的清除作用,同时以一次典型降水过程为例,具体分析降水对颗粒物的影响。结果表明:降水总量的增加有助于促进PM2.5、PM10的清除,随着降水总量增加,PM2.5、PM10的平均清除率提高,有效清除的比例增加;连续降水可增强对大气颗粒物的湿清除作用,连续降水达3d可有效降低PM2.5、PM10浓度;降水对PM2.5、PM10浓度的清除率和大气颗粒物前一日的平均浓度有较好的正相关性。降水对大气颗粒物的清除可分为清除、回升和平稳3个阶段,各个阶段大气颗粒物的变化趋势不同。降水对于大气气溶胶化学组分和酸碱性的改变具有明显作用,对于大气颗粒物各种组分的清除效果不完全相同。对于大气中OC、NO3-、SO42-和NH4+去除率较高,且这4种组分主要以颗粒态形式被冲刷进入降水中,加剧了北京市降水酸化程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号