首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

2.
The gene for the catalytic domain of thermostable endo-β-1,3-glucanase (laminarinase) LamA was cloned from Thermotoga maritima MSB8 and heterologously expressed in a bioengineered Synechococcus sp. PCC 7002. The mutant strain was cultured in a photobioreactor to assess biomass yield, recombinant laminarinase activity, and CO2 uptake. The maximum enzyme activity was observed at a pH of 8.0 and a temperature of 70°C. At a CO2 concentration of 5%, we obtained a maximum specific growth rate of 0.083 h–1, a biomass productivity of 0.42 g?L–1?d–1, a biomass concentration of 3.697 g?L–1, and a specific enzyme activity of the mutant strain of 4.325 U?mg–1 dry mass. All parameters decreased as CO2 concentration increased from 5% to 10% and further to 15% CO2, except enzyme activity, which increased from 5% to 10% CO2. However, the mutant culture still grew at 15% CO2 concentration, as reflected by the biomass productivity (0.26 g?L–1?d–1), biomass concentration (2.416 g?L–1), and specific enzyme activity (3.247 U?mg–1 dry mass).
  相似文献   

3.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

4.
Conventional biological removal of nitrogen and phosphorus is usually limited due to the lack of biodegradable carbon source, therefore, new methods are needed. In this study, a new alternative consisting of enhanced biological phosphorus removal (EBPR) followed by partial nitritationanammox (PN/A), is proposed to enhance nutrients removal from municipal wastewater. Research was carried out in a laboratory-scale system of combined two sequencing batch reactors (SBRs). In SBR1, phosphorus removal was achieved under an alternating anaerobic-aerobic condition and ammonium concentration stayed the same since nitrifiers were washed out from the reactor under short sludge retention time of 2–3 d. The remaining ammonium was further treated in SBR2 where PN/A was established by inoculation. A maximum of nitrogen removal rate of 0.12 kg N?m–3?d–1 was finally achieved. During the stable period, effluent concentrations of total phosphorus and total nitrogen were 0.25 and 10.8 mg?L–1, respectively. This study suggests EBPR-PN/A process is feasible to enhance nutrients removal from municipal wastewater of low influent carbon source.
  相似文献   

5.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

6.
In the present paper, a polymer inclusion membrane (PIM) containing polyvinyl chloride (PVC), and bis-(2-ethylhexyl) phosphate (D2EHPA) which was used as extracting agent was used for the recovery of In(III) ions in hydrochloric acid medium. The effects of carrier concentration, feed phase pH, strip phase HCl concentration, temperature on the transport, and the membrane’s stability and thickness were examined. And the conditions for the selective separation of In(III) and Cu(II) were optimized. The results showed that the transport of In(III) across PIM was consistent with the first order kinetics equation, and also it was controlled by both the diffusion of the metal complex in the membrane and the chemical reaction at the interface of the boundary layers. The transport flux (J 0) was inversely proportional to the membrane thickness, however, the transport stability improved as the membrane thickness increased. The transport flux of In(III) and Cu(II) was decreased by excessive acidity of feed phase and high concentration of Cl. The selectivity separation coefficient of In(III)/Cu(II) was up to 34.33 when the original concentration of both In(III) and Cu(II) was 80 mg?L–1 as well as the pH of the feed phase and the concentration of Cl in the adjusting context were0.6 and 0.5 mol?L–1, respectively.Within the range of pH = 1–3, the separation selectivity of In(III)/Cu(II) reached the peak in the case when the Cl concentration was 0.7 mol?L–1.
  相似文献   

7.
Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were employed to evaluate the Nitrous oxide (N2O) production in biological aerated filters (BAFs) under varied dissolved oxygen (DO) concentrations during treating wastewater under laboratory scale. The average yield of gasous N2O showed more than 4-fold increase when the DO levels were reduced from 6.0 to 2.0 mg?L–1, indicating that low DO may drive N2O generation. PCR-DGGE results revealed that Nitratifractor salsuginis were dominant and may be responsible for N2O emission from the BAFs system. While at a low DO concentration (2.0 mg?L–1), Flavobacterium urocaniciphilum might play a role. When DO concentration was the limiting factor (reduced from 6.0 to 2.0 mg?L–1) for nitrification, it reduced NO 2 - -N oxidation as well as the total nitrification. The data from this study contribute to explain how N2O production changes in response to DO concentration, and may be helpful for reduction of N2O through regulation of DO levels.
  相似文献   

8.
Inflow and infiltration (I/I) are serious problems in hybrid sewerage systems. Limited sewerage information impedes the estimation accuracy of I/I for each catchment. A new method dealing with I/I of a large-scale hybrid sewerage system with limited infrastructure facility data is proposed in this study. The catchment of representative pump stations was adopted to demonstrate the homological catchments that have similar wastewater fluctuation characteristics. Homological catchments were clustered using the self-organizing map (SOM) analysis based on long-term daily flow records of 50 pumping stations. An assessment index was applied to describe the I/I and overflow risk in the catchment based on the hourly wastewater quality and quantity data of representative pump stations. The potential operational strategy of homological catchments was determined by the assessment index of representative pump stations. The simulation results of the potential operational strategy indicated that the optimized operation strategy could reduce surcharge events and significantly improve the quality of wastewater treatment plant effluent.
  相似文献   

9.
The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.
  相似文献   

10.
It is common that 2,4,6-trichlorophenol (TCP) coexists with nitrate or nitrite in industrial wastewaters. In this work, simultaneous reductive dechlorination of TCP and denitrification of nitrate or nitrite competed for electron donor, which led to their mutual inhibition. All inhibitions could be relieved to a certain degree by augmenting an organic electron donor, but the impact of the added electron donor was strongest for TCP. For simultaneous reduction of TCP together with nitrate, TCP’s removal rate value increased 75% and 150%, respectively, when added glucose was increased from 0.4 mmol?L–1 to 0.5 mmol?L–1 and to 0.76 mmol?L–1. For comparison, the removal rate for nitrate increased by only 25% and 114% for the same added glucose. The relationship between their initial biodegradation rates versus their initial concentrations could be represented well with the Monod model, which quantified their half-maximum-rate concentration (K S value), and K S values for TCP, nitrate, and nitrite were larger with simultaneous reduction than independent reduction. The increases in K S are further evidence that competition for the electron donor led to mutual inhibition. For bioremediation of wastewater containing TCP and oxidized nitrogen, both reduction reactions should proceed more rapidly if the oxidized nitrogen is nitrite instead of nitrate and if readily biodegradable electron acceptor is augmented.
  相似文献   

11.
Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg?kg–1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg?kg–1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰were obtained from laboratory simulated ICDW using both glacial acetic acid-sodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and dermal ingestion amount by local workers was 9.8 × 10–3 and 1.9 × 10–2 mg?(kg?d)–1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
  相似文献   

12.
A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mgL·(L·h)–1, respectively. Meanwhile, negligible NO3 and NO2 were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.
  相似文献   

13.
The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L–1, SRF of the sludge decreased from 7.85 × 1012 m·kg–1 to 2.06 × 1012 m·kg–1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.
  相似文献   

14.
Denitrifying biofilter (DNBF) is widely used for advanced nitrogen removal in the reclaimed wastewater treatment plants (RWWTPs). Manual control of DNBF easily led to unstable process performance and high cost. Consequently, there is a need to automatic control of two decisive operational processes, carbon dosage and backwash, in DNBF. In this study, online control of DNBF was investigated in the pilot-scale DNBF (600 m3·d–1), and then applied in the full-scale DNBF (10 × 104 m3·d–1). A novel simple online control strategy for carbon dosage with the effluent nitrate as the sole control parameter was designed and tested in the pilot-scale DNBF. Backwash operation was optimized based on the backwash control strategy using turbidity as control parameter. Using the integrated control strategy, in the pilot-scale DNBF, highly efficient nitrate removal with effluent TN lower than 3 mg·L–1 was achieved and DNBF was not clogged any more. The online control strategy for carbon dosage was successfully applied in a RWWTP. Using the online control strategy, the effluent nitrate concentration was controlled relatively stable and carbon dosage was saved for 18%.
  相似文献   

15.
The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.
  相似文献   

16.
In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg?L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW?cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh?m–3?order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg?L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ?OH was formed under visible light, and ?O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.
  相似文献   

17.
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3 , F, SO4 2–, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.
  相似文献   

18.
The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70 mmol·L–1) and lactate (10 mmol·L–1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta-(22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 ×105±0.5 × 105 to 4.99 × 107±0.32 × 107 copies mL–1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is prior to be applied for in situ bioremediation of notorious halogenated compounds.
  相似文献   

19.
Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe3O4 nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe2+/Fe3+ molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe3O4 nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe3O4 nanoparticles were single phase. The Fe3O4 nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe3O4 nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g–1 and a remanence of 10.500 emu·g–1. The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.
  相似文献   

20.
Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced from corn straw. Biochar pyrolyzed under 400°C for 2 h could reach the ideal removal efficiencies (99.24%and 98.62% for Cd and Pb, respectively) from water with the biochar dosage of 20 g·L–1 and initial concentration of 20 mg·L–1. The pH value of 4–7 was the optimal range for adsorption reaction. The adsorption mechanism was discussed on the basis of a range of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman analysis; it was concluded as surface complexation with active sorption sites (-OH, -COO-), coordination with π electrons (C = C, C = O) and precipitation with inorganic anions (OH-, CO3 2–, SO4 2–) for both Cd and Pb. The sorption isotherms fit Langmuir model better than Freundlich model, and the saturated sorption capacities for Cd and Pb were 38.91 mg·g-1 and 28.99 mg·g–1, respectively. When mixed with soil, biochar could effectively increase alkalinity and reduce bioavailability of heavy metals. Thus, biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号