首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tile drainage significantly alters flow and nutrient pathways and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but few applications have evaluated the model's ability to simulate pathway‐specific flow components or nitrate‐nitrogen (NO3‐N) concentrations in tile‐drained watersheds at the daily time step. The objectives of this study were to develop and calibrate SWAT models for small, tile‐drained watersheds, evaluate model performance for simulation of flow components and NO3‐N concentration at daily intervals, and evaluate simulated soil‐nitrogen dynamics. Model evaluation revealed that it is possible to meet accepted performance criteria for simulation of monthly total flow, subsurface flow (SSF), and NO3‐N loads while obtaining daily surface runoff (SURQ), SSF, and NO3‐N concentrations that are not satisfactory. This limits model utility for simulating best management practices (BMPs) and compliance with water quality standards. Although SWAT simulates the soil N‐cycle and most predicted fluxes were within ranges reported in agronomic studies, improvements to algorithms for soil‐N processes are needed. Variability in N fluxes is extreme and better parameterization and constraint, through use of more detailed agronomic data, would also improve NO3‐N simulation in SWAT. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

2.
Welker, Andrea L., James D. Barbis, and Patrick A. Jeffers, 2012. A Side‐by‐Side Comparison of Pervious Concrete and Porous Asphalt. Journal of the American Water Resources Association (JAWRA) 48(4): 809‐819. DOI: 10.1111/j.1752‐1688.2012.00654.x Abstract: This article compares the performance of two permeable pavements, pervious concrete and porous asphalt, that were installed side‐by‐side in fall 2007. Because the pavements are located directly adjacent to one another, they experience the same vehicle loads, precipitation, and pollution loads. These permeable pavements are part of an infiltration stormwater control measure (SCM). This article focuses on the comparison of water quality parameters, maintenance and durability, and user perception. Eleven different water quality parameters were analyzed at this site for 19 different storm events over a one year period: pH, conductivity, total suspended solids, chlorides, total nitrogen, total phosphorus, total dissolved copper, total dissolved lead, total dissolved cadmium, total dissolved chromium, and total dissolved zinc. Results from the two pavement types were compared using the Mann–Whitney U‐test. The only parameter that was found to be statistically different between the two pavements was pH. Periodic inspection of the two pavement types indicated that after two years of use both pavements were wearing well. However, there was some evidence of clogging of both pavements and some evidence of surface wear. A survey of users of the lot indicated that the perception of these permeable pavements was favorable.  相似文献   

3.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

4.
ABSTRACT: Nonpoint source (NPS) models and expert opinions are often used to prescribe best management practices (BMPs) for controlling NPS pollution. An optimization algorithm (e.g., a genetic algorithm, or GA) linked with a NPS model (e.g., Annualized AGricultural Nonpoint Source pollution model, or AnnAGNPS), can be used to more objectively prescribe BMPs and to optimize NPS pollution control measures by maximizing pollutant reduction and net monetary return from a watershed. Pollutant loads from design storms and annual loads from a continuous simulation can both be used for optimizing BMP schemes. However, which strategy results in a better solution (in terms of providing water quality protection) for a watershed is not clear. The specific objective of the study was to determine the differences in watershed pollutant loads, in an experimental watershed in Pennsylvania, resulting from optimization analyses performed using pollutant loads from a series of five 2‐yr 24‐hr storm events, a series of five 5‐yr 24‐hr storm events, and cumulative pollutant loads from a continuous simulation of five years of weather data. For each of these three different event alternatives, 100 near optimal solutions (BMP schemes) were generated. Sediment (Sed), sediment nitrogen (SedN), dissolved N (SolN), sediment organic carbon (SedOC), and sediment phosphorus (SedP) loads from a different five‐year period (an evaluation period) suggest that the optimal BMP schemes resulting from the use of annual cumulative pollutant loads from a continuous simulation of five years of weather data provide smaller cumulative NPS pollutant loads at the watershed outlet.  相似文献   

5.
Long‐term simulations of agricultural watersheds have often been done assuming constant land use over time, but this is not a realistic assumption for many agricultural regions. This paper presents the soil and water assessment tool (SWAT)‐Landuse Update Tool (LUT), a standalone, user‐friendly desktop‐based tool for updating land use in the SWAT model that allows users to process multi‐year land use data. SWAT‐LUT is compatible with several SWAT model interfaces, provides users with several options to easily prepare and incorporate land use changes (LUCs) over a simulation period, and allows users to incorporate past or emerging land use categories. Incorporation of LUCs is expected to provide realistic model parameterization and scenario simulations. SWAT‐LUT is a public domain interface written in Python programming language. Two applications at the Fort Cobb Reservoir Experimental Watershed located in Oklahoma and pertinent results are provided to demonstrate its use. Incorporating LUCs related to implementation of recommended conservation practices over the years reduced discharge, evapotranspiration, sediment, total nitrogen, and total phosphorus loads by 59%, 9%, 68%, 53%, and 88%, respectively. The user’s manual is included in this article as Supporting Information. The SWAT‐LUT executable file and an example SWAT project with three land use rasters and the user’s manual are available at the United States Department of Agriculture‐Agricultural Research Service Grazinglands Research Laboratory website under Software. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

6.
The shallow‐water component of the Chesapeake Bay Environmental Model Package emphasizes the regions of the system inside the 2‐m depth contour. The model of these regions is unified with the system‐wide model but places emphasis on locally significant components and processes, notably submerged aquatic vegetation (SAV), sediment resuspension, and their interaction with light attenuation (Ke). The SAV model is found to be most suited for computing the equilibrium distribution of perennial species. Addition of plant structure and propagation are recommended to improve representation of observed trends in SAV area. Two approaches are taken to examining shallow‐water Ke. The first compares observed and computed differences between deep‐ and shallow‐water Ke. No consistent difference in observations is noted. In the preponderance of regions examined, computed shallow‐water Ke exceeds computed deep‐water Ke. The second approach directly compares Ke measured in shallow water with modeled results. Model values are primarily lower than observed, in contrast to results in deep water where model values exceed observed. The shortfall in computed Ke mirrors a similar shortfall in computed suspended solids. Improved model representation of Ke requires process‐based investigations into suspended solids dynamics as well as increased model resolution in shallow‐water regions.  相似文献   

7.
Abstract: China has experienced a rapid land‐use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC‐water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China’s river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland‐related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China’s water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition.  相似文献   

8.
A numerical model, the Curvilinear Hydrodynamics in 3‐Dimensions, Waterway Experiment Station version (CH3D‐WES), was applied to represent transport processes of the Chesapeake Bay. Grid resolution and spatial coverage, tied with realistic bathymetry, ensured dynamic responses along the channel and near the shoreline. The model was run with the forcing ranges from high frequency astronomical tides to lower frequency meteorological forcing, given by surface wind and heat flux, as well as hydrological forcing given by fresh water inflows both from upstream and distributed sources along the shoreline. To validate the model, a long‐term simulation over seven‐year time period between 1994 and 2000 was performed. The model results were compared with existing observation data including water level time series, which spans over a wide spectrum of time scales, and long‐term variations in salinity structures over varying parts of the Bay. The validated model is set to provide an appropriate transport mechanism to the water quality model through linkage, warranting that the model takes into account the complexity in time and spatial scales associated with the dynamic processes in the Chesapeake.  相似文献   

9.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

10.
Abstract: New criteria, pollutant load of unit area (PLUA), are developed for sustainable water quality management, which not only avoids degrading water quality but also considers the equity of development between different generations. A simulation‐optimization model is established to determine PLUA, in which uses the QUAL2E model to simulate pollutant transport and formulates a linear programming model to optimize the objective of maximal loads (carrying capacity). Two watersheds, the Touchen creek and the Keya creek, both in Taiwan, are taken as case studies. The PLUA criterion is applied to several existing projects which have passed environmental impact assessment (EIA). The results show that if the Hsinchu Science‐Based Industrial Park discharges wastewater to the Touchen creek, the total pollutant discharge of 85.6 kg/day exceeds the allocated load. Consequently, a waste reduction of at least 23.4% is required. Although these existing projects have passed EIA, most of them violate the criterion of PLUA and thus contribute to continued degradation of water quality. This study suggests developing PLUA as a part of the process of strategic environmental assessment (SEA) for watershed management plans and then applying it to EIA as a criterion for new project assessment. Furthermore, if carrying capacities of all pollutant discharges and resource uses can be translated into loads per unit of area, an integrated sustainable watershed management plan can be developed.  相似文献   

11.
Walton‐Day, Katherine, Robert L. Runkel, and Briant A. Kimball, 2012. Using Spatially Detailed Water‐Quality Data and Solute‐Transport Modeling to Support Total Maximum Daily Load Development. Journal of the American Water Resources Association (JAWRA) 48(5): 949‐969. DOI: 10.1111/j.1752‐1688.2012.00662.x Abstract: Spatially detailed mass‐loading studies and solute‐transport modeling using OTIS (One‐dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass‐loading data collected during low‐flow from Cement Creek (a low‐pH, metal‐rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL‐recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53‐63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse‐source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse‐source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.  相似文献   

12.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

13.
Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream‐discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use‐land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long‐term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.  相似文献   

14.
An initial inquiry into model‐based numeric nitrogen and phosphorus (nutrient) criteria for large rivers is presented. Field data collection and associated modeling were conducted on a segment of the lower Yellowstone River in the northwestern United States to assess the feasibility of deriving numeric nutrient criteria using mechanistic water‐quality models. The steady‐state one‐dimensional model QUAL2K and a transect‐based companion model AT2K were calibrated and confirmed against low‐flow conditions at a time when river loadings, water column chemistry, and diurnal indicators were approximately steady state. Predictive simulation was then implemented via nutrient perturbation to evaluate the steady‐state and diurnal response of the river to incremental nutrient additions. In this first part of a two‐part series, we detail our modeling approach, model selection, calibration and confirmation, sensitivity analysis, model outcomes, and associated uncertainty. In the second part (Suplee et al., 2015) we describe the criteria development process using the tools described herein. Both articles provide a fundamental understanding of the process required to develop site‐specific numeric nutrient criteria using models in applied regulatory settings.  相似文献   

15.
Chang, Jian‐xia, Yi‐min Wang, and Qiang Huang, 2011. Water Dispatch Model for Middle Route of a South‐to‐North Water Transfer Project in China. Journal of the American Water Resources Association (JAWRA) 47(1):70‐80. DOI: 10.1111/j.1752‐1688.2010.00478.x Abstract: The objective of this paper is to present a simulation model to address the water dispatch problem of the south‐to‐north water transfer project for the Middle Route system in China. Reasonable rules and a system network structure are established. This model consists of five modules: (1) a data‐processing module, (2) an initial control module, (3) a multisource simulation dispatch module, (4) a system identification module, and (5) a revision module. Water allocated to each province and city along the route is obtained by simulation, and the long‐term operation results show that water supply reliabilities are significantly improved if the transferred water is jointly dispatched with the local water resources.  相似文献   

16.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

17.
Long-term phosphorus immobilization by a drinking water treatment residual   总被引:1,自引:0,他引:1  
Excessive soluble P in runoff is a common cause of eutrophication in fresh waters. Evidence indicates that drinking water treatment residuals (WTRs) can reduce soluble P concentrations in P-impacted soils in the short term (days to weeks). The long-term (years) stability of WTR-immobilized P has been inferred, but validating field data are scarce. This research was undertaken at two Michigan field sites with a history of heavy manure applications to study the longevity of alum-based WTR (Al-WTR) effects on P solubility over time (7.5 yr). At both sites, amendment with Al-WTR reduced water-soluble P (WSP) concentration by >or=60% as compared to the control plots, and the Al-WTR-immobilized P (WTR-P) remained stable 7.5 yr after Al-WTR application. Rainfall simulation techniques were utilized to investigate P losses in runoff and leachate from surface soils of the field sites at 7.5 yr after Al-WTR application. At both sites, amendment with Al-WTR reduced dissolved P and bioavailable P (BAP) by >50% as compared to the control plots, showing that WTR-immobilized P remained nonlabile even 7.5 yr after Al-WTR amendment. Thus, WTR-immobilized P would not be expected to dissolve into runoff and leachate to contaminate surface waters or groundwater. Even if WTR-P is lost via erosion to surface waters, the bioavailability of the immobilized P should be minimal and should have negligible effects on water quality. However, if the WTR particles are destroyed by extreme conditions, P loss to water could pose a eutrophication risk.  相似文献   

18.
Saad, David A., Gregory E. Schwarz, Dale M. Robertson, and Nathaniel L. Booth, 2011. A Multi‐Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models. Journal of the American Water Resources Association (JAWRA) 47(5):933‐949. DOI: 10.1111/j.1752‐1688. 2011.00575.x Abstract: Stream‐loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long‐term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water‐quality model, the flow‐bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water‐quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.  相似文献   

19.
ABSTRACT: The sampling of streams and estimation of total loads of nitrogen, phosphorus, and suspended sediment play an important role in efforts to control the eutrophication of Lake Tahoe. We used a Monte Carlo procedure to test the precision and bias of four methods of calculating total constituent loads for nitrate‐nitrogen, soluble reactive phosphorus, particulate phosphorus, total phosphorus, and suspended sediment in one major tributary of the lake. The methods tested were two forms of the Beale's Ratio Estimator, the Period Weighted Sample, and the Rating Curve. Intensive sampling in 1985 (a dry year) and 1986 (a wet year) provided a basis for estimating loads by the “worked record” method for comparison with estimates based on resampling actual data at the lower intensity that characterizes the present monitoring program. The results show that: (1) the Period Weighted Sample method was superior to the other methods for all constituents for 1985; and (2) for total phosphorus, particulate phosphorus, and suspended sediment, the Rating Curve gave the best results in 1986. Modification of the present sampling program and load calculation methods may be necessary to improve the precision and reduce the bias of estimates of total phosphorus loads in basin streams.  相似文献   

20.
ABSTRACT: This study developed a QUAL2E‐Reliability Analysis (QUAL2E‐RA) model for the stochastic water quality analysis of the downstream reach of the main Han River in Korea. The proposed model is based on the QUAL2E model and incorporates the Advanced First‐Order Second‐Moment (AFOSM) and Mean‐Value First‐Order Second‐Moment (MFOSM) methods. After the hydraulic characteristics from standard step method are identified, the optimal reaction coefficients are then estimated using the Broyden‐Fletcher‐Goldfarb‐Shanno (BFGS) method. Considering variations in river discharges, pollutant loads from tributaries, and reaction coefficients, the violation probabilities of existing water quality standards at several locations in the river were computed from the AFOSM and MFOSM methods, and the results were compared with those from the Monte Carlo method. The statistics of the three uncertainty analysis methods show that the outputs from the AFOSM and MFOSM methods are similar to those from the Monte Carlo method. From a practical model selection perspective, the MFOSM method is more attractive in terms of its computational simplicity and execution time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号