首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Over the last 30 years, average annual riverine flood damages have exceed $2 billion. Damages associated with the Mississippi River Flood of 1993 exceeded $12 billion and these costs do not include the non-quantifiable, human impacts of this disaster. In a report submitted to the White House in June 1994, a federal interagency floodplain management review committee proposed better ways to manage the nation's floodplains. The committee indicated that the 1993 Mississippi River flood was the result of a significant hydrometeorological event, that federal flood control efforts in the Mississippi basin had prevented nearly $20 billion in potential damages, and that, in spite of federal flood damage reduction efforts, throughout the nation people and property remain at risk to inevitable future flooding. It recommended that the division of decision and cost-sharing responsibilities among federal, state and local governments be more clearly defined, and that the nation adopt a strategy of, sequentially, avoiding inappropriate use of the flood-plain, minimizing vulnerability to damage through both nonstruc-tural and structural means, and mitigating damages as they occur. The report did not call for abandonment of human use of the flood-plain but argued for full consideration of the economic, social and environmental costs and benefits of all future floodplain activity.  相似文献   

2.
This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.  相似文献   

3.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

4.
ABSTRACT: A flood control reservoir protects valuable developments on the downstream flood plain by storing flood waters and releasing them at a rate that will reduce the downstream damage. The water surface level of the flood pool behind the dam can fluctuate considerably during the occurrence of a large magnitude flood causing the inundation of trees, low vegetation, and water based recreation facilities located in those areas of the flood pool area that are normally well above the water level. The amount of damage that will occur in the upper levels of the flood storage area will depend on the depth and duration of the inundation that occurs. This, in turn, is directly related to the operating policy for the reservoir. A dynamic programming optimization model of flood control reservoir operation is presented. This model determines the reservoir operating schedule that minimizes downstream flood damages. Various constraints are added to the model to account for the environmental impacts of long periods of flood storage.  相似文献   

5.
The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river modification and hydrological alteration on the floodplain vegetation. The spatially distributed vegetation model developed in this study is a step forward in modeling riparian vegetation succession and can be used for operational loss assessment, and river and floodplain restoration projects.  相似文献   

6.
ABSTRACT: The hedonic valuation method was used to quantify the impact of floodplain location on housing values in Fargo‐Moor‐head. Being located in the 100‐year floodplain lowered the home values by $8,990, and such homes were worth $10,241 less than similar homes located outside the floodplain before the major flood event of 1997. Required flood insurance premiums for these homes were determined to account for approximately 81 percent of this price depreciation. In contrast, homes in the 500‐year floodplain were worth $3,100 more than similar homes not in the floodplain. It was concluded that more disclosure is needed regarding the location of the 500‐year floodplain, and that the hedonic valuation method can be used to calculate the economic gains and losses associated with flood mitigation projects or floodplain remapping efforts that result in the reclassification of the legal floodplain status of individual homes.  相似文献   

7.
Flood inundation maps play a key role in assessment and mitigation of potential flood hazards. However, owing to high costs associated with the conventional flood mapping methods, many communities in the United States lack flood inundation maps. The objective of this study is to develop and examine an economical alternative approach to floodplain mapping using widely available soil survey geographic (SSURGO) database. In this study, floodplain maps are developed for the entire state of Indiana, and some counties in Minnesota, Wisconsin, and Washington states by identifying flood‐prone soil map units based on their attributes. For validation, the flood extents obtained from SSURGO database are compared with the extents from other floodplain maps such as the Federal Emergency Management Agency issued flood insurance rate maps (FIRMs), flood extents observed during past floods, and flood maps derived using digital elevation models. In general, SSURGO‐based floodplain maps (SFMs) are largely in agreement with other flood inundation maps. Specifically, the floodplain extents from SFMs cover 78‐95% area compared to FIRMs and observed flood extents. Thus, albeit with a slight loss in accuracy, the SSURGO approach offers an economical and fast alternative for floodplain mapping. In particular, it has potentially high utility in areas where no detailed flood studies have been conducted.  相似文献   

8.
ABSTRACT: There is a long standing hypothesis that overdevelopment has occurred in the nation's floodplains due to imperfect information about the potential flood hazard, an expectation of disaster relief and anticipation of future structural protection. This hypothesis is investigated with multiple regression analysis of data for a case study area. In particular the question of whether floodplain residential property values are fully discounted for expected flood damages is addressed by considering the impact of the National Flood Insurance Program on property values. The extent to which flooding risk perceptions are based on low cost information such as distance from and elevation above the river is also considered. Finally, implications for floodplain management policy are discussed.  相似文献   

9.
ABSTRACT: Hydraulic modification of flood plains by human activity is the primary cause of rising flood damages throughout the world. As flood‐plain hydraulic roughness increases, so does the water level for a fixed flow rate. This raises the flood damage associated with a flood of given return period, and thus, magnifies the flood risk. This article presents an approach that integrates climatic, hydrologic, and hydraulic principles and presents models to discern the probable causes of flood damage in a basin that undergoes flood‐plain development. The article documents key factors that govern flood damage and presents a case study that illustrates the principles of forensic hydrology in an impacted flood plain. The study demonstrates flood level rise caused by hydraulic alteration of a flood plain between 1969 and 1995 and apportioned the increased water level among agricultural and structural factors located in the study area.  相似文献   

10.
National Flood Interoperability Experiment (NFIE) derived technologies and workflows will offer the ability to rapidly forecast flood damages. Address Points used by emergency management personnel approximate the locations of buildings, and they are a common operating picture for emergency responders. Most United States (U.S.) county tax assessment offices throughout the contiguous U.S. (CONUS) produce georeferenced cadastral data. To varying degrees, these parcel data describe building characteristics of structures within the parcel. Address Point data with cadastral data offers the ability to rapidly develop building inventories for flood damage estimation. Flood damage forecasts can expedite recovery and improve short‐term flood resilience. In this work the authors evaluate Flood Damage Wizard, a proposed open source platform independent methodology. Flood Damage Wizard uses point shapefile building information to estimate flood damage to buildings by finding the appropriate depth‐damage function using fuzzy‐text matching. The authors apply Flood Damage Wizard using Address Point and parcel datasets to demonstrate a method of estimating flood damage to buildings nearly anywhere within the CONUS. Results indicate using Address Point and cadastral datasets can generate total flood damage estimates approximate to those estimated using existing software solutions Hazus‐MH and HEC‐FIA with minimal manual processing of input data.  相似文献   

11.
ABSTRACT: In conventional flood damage reduction studies, flood damage is usually estimated with a damage function according to the depth of inundation. However, this method may not reflect the conditions of each family residing in the floodplain because it ignores not only the distribution of flood damage but also the effect of building characteristics and residents' preparedness. This paper uses data from a questionnaire based survey (N= 3,036) conducted 17 months after the Tokai Flood of 2000 that caused disastrous losses to household properties. It provides a conceptual “doughnut structure” model of flood damage to houses and house contents and a mathematical basis for models to explore the determinants of flood damage. Besides the inundation depth, house type significantly affects both the house structural and content damage probabilities, while house ownership and house structure affect house damage probability but not house content damage probability at a given depth. Inundation depth, residing period, and household income significantly affect both house and content damage values. In addition, house ownership has a significant impact on the house damage value, while house structure has an impact on content damage value.  相似文献   

12.
Abstract: After a century of evolving flood policies, there has been a steady increase in flood losses, which has partly been driven by development in flood prone areas. National flood policy was revised in 1994 to focus on limiting and reducing the amount of development inside the 100‐year floodplain, with the goal of decreasing flood losses, which can be measured and quantified in terms of population and property value inside the 100‐year floodplain. Monitoring changes in these measurable indicators can inform where and how effective national floodplain management strategies have been. National flood policies are restricted to the spatial extent of the 100‐year floodplain, thus there are no development regulations to protect against flooding adjacent to this boundary. No consistent monitoring has been undertaken to examine the effect of flood policy on development immediately outside the 100‐year floodplain. We developed a standardized methodology, which leveraged national data to quantify changes in population and building tax value (exposure). We applied this approach to counties in North Carolina to assess (1) temporal changes, before and after the 1994 policy and (2) spatial changes, inside and adjacent to the 100‐year floodplain. Temporal results indicate the Piedmont and Mountain Region had limited success at reducing exposure within the 100‐year floodplain, while the Coastal Plain successfully reduced exposure. Spatially, there was a significant increase in exposure immediately outside the 100‐year floodplain throughout North Carolina. The lack of consistent monitoring has resulted in the continuation of this unintended consequence, which could be a significant driver of increased flood losses as any flood even slightly higher than the 100‐year floodplain will have a disproportionately large impact since development is outside the legal boundary of national flood policy.  相似文献   

13.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

14.
Flood area and damage estimation in Zhejiang,China   总被引:1,自引:0,他引:1  
A GIS-based method to estimate flood area and damage is presented in this paper, which is oriented to developing countries like China, where labor is readily available for GIS data collecting, and tools such as, HEC-GeoRAS might not be readily available. At present local authorities in developing countries are often not predisposed to pay for commercial GIS platforms. To calculate flood area, two cases, non-source flood and source flood, are distinguished and a seed-spread algorithm suitable for source-flooding is described. The flood damage estimation is calculated in raster format by overlaying the flood area range with thematic maps and relating this to other socioeconomic data. Several measures used to improve the geometric accuracy and computing efficiency are presented. The management issues related to the application of this method, including the cost-effectiveness of approximate method in practice and supplementing two technical lines (self-programming and adopting commercial GIS software) to each other, are also discussed. The applications show that this approach has practical significance to flood fighting and control in developing countries like China.  相似文献   

15.
Real‐time flood inundation mapping is vital for emergency response to help protect life and property. Inundation mapping transforms rainfall forecasts into meaningful spatial information that can be utilized before, during, and after disasters. While inundation mapping has traditionally been conducted on a local scale, automated algorithms using topography data can be utilized to efficiently produce flood maps across the continental scale. The Height Above the Nearest Drainage method can be used in conjunction with synthetic rating curves (SRCs) to produce inundation maps, but the performance of these inundation maps needs to be assessed. Here we assess the accuracy of the SRCs and calculate statistics for comparing the SRCs to rating curves obtained from hydrodynamic models calibrated against observed stage heights. We find SRCs are accurate enough for large‐scale approximate inundation mapping while not as accurate when assessing individual reaches or cross sections. We investigate the effect of terrain and channel characteristics and observe reach length and slope predict divergence between the two types of rating curves, and SRCs perform poorly for short reaches with extreme slope values. We propose an approach to recalculate the slope in Manning’s equation as the weighted average over a minimum distance and assess accuracy for a range of moving window lengths.  相似文献   

16.
Flood forecasts and warnings are intended to reduce flood‐related property damages and loss of human life. Considerable research has improved flood forecasting accuracy (e.g., more accurate prediction of the occurrence of flood events) and lead time. However, the delivery of improved forecast information alone is not necessarily sufficient to reduce flood damage and loss of life, as people have varying responses and reactions to flood warnings. This study develops an agent‐based modeling framework that evaluates the impacts of heterogeneity in human behaviors (i.e., variation in behaviors in response to flood warnings), as well as residential density, on the benefits of flood warnings. The framework is coupled with a traffic model to simulate evacuation processes within a road network under various flood warning scenarios. The results show the marginal benefit associated with providing better flood warnings is significantly constrained if people behave in a more risk‐tolerant manner, especially in high‐density residential areas. The results also show significant impacts of human behavioral heterogeneity on the benefits of flood warnings, and thus stress the importance of considering human behavioral heterogeneity in simulating flood warning‐response systems. Further study is suggested to more accurately model human responses and behavioral heterogeneity, as well as to include more attributes of residential areas to estimate and improve the benefits of flood warnings.  相似文献   

17.
ABSTRACT: The Chicago Metropolitan Floodwater Management Plan is a cooperative planning program under Public Law 566 of the 83rd Congress (The Watershed Protection and Flood Prevention Act). The planning effort was jointly sponsored by the U.S. Department of Agriculture, Soil Conservation Service, and the Metropolitan Sanitary District of Greater Chicago. The project is unique in that it studies a 1260 square mile (3266 sq. kilometer) watershed, which is approximately 35 percent urbanized and contains approximately 7.5 million people. At present, approximately 4.4 percent or 330,600 people live in a floodplain. It is presently estimated that 80,000 acres (32,000 ha.) of the study area are subject to flooding with a current average annual damage estimated at approximately $10 million. The Plan which has been developed to reduce or eliminate these damages is divided into six separate watershed plans, and has been developed through extensive use of local citizen watershed steering committees. The paper discusses the planning process, public participation and implementation both at an overall river basin level and watershed case study level.  相似文献   

18.
Abstract: This study investigates the regional analysis of annual maximum flood series of 48 stream gauging stations in the basins of the West Mediterranean Region in Turkey. The region is divided into three homogeneous subregions according to both Student‐t test and Dalrymple homogeneity test. The regional relationships of mean annual flood per unit area‐drainage area and coefficient of skew‐coefficient of variation are obtained. Two statistically meaningful relationships of the mean flood per unit area‐drainage area and a unique relationship between skewness and variation coefficients exist. Results show that the index‐flood method may be applicable to each homogenous subregion to estimate flood quantiles in the study area.  相似文献   

19.
ABSTRACT: Bank full hydraulic geometry relationships relate stream channel geometry to watershed size for specific physiographic regions. This paper presents bank full hydraulic geometry relationships and recurrence intervals for the Southeastern Plain coercion and the flat woods subtype of the Middle Atlantic Coastal Plain ecoregion found within North Carolina's Coastal Plain physiographic province. Cross‐sectional and longitudinal survey data from gated and unpaged streams were used to compute channel dimension and profile information. Power functions were developed, relating drainage area to bank full discharge, cross‐sectional area, width, and mean depth. Recurrence intervals of bank full events were estimated from gagged streams using both a Log‐Pearson Type III distribution of peak annual discharge and a partial‐duration series of average daily discharge. Results from both methods indicate that average bank full recurrence intervals for the study area are below one year. Determinations of recurrence intervals by the Log‐Pearson Type III distribution were for the most part inconclusive (less than one year), while a partial duration series estimated a 0.19 year average, ranging from 0.11 to 0.31 years.  相似文献   

20.
Chen, Li, Rina Schumer, Anna Knust, and William Forsee, 2011. Impact of Temporal Resolution of Flow‐Duration Curve on Sediment Load Estimation. Journal of the American Water Resources Association (JAWRA) 48(1): 145‐155. DOI: 10.1111/j.1752‐1688.2011.00602.x Abstract: Estimates of a channel’s annual sediment transport capacity typically incorporate annualized flow‐duration curves. Average daily flow data, commonly used to develop flow‐duration curves, may not adequately describe sediment‐transporting flows in arid and semiarid ephemeral streams. In this study, we examined impacts of varied temporal resolution flow data on annual sediment load estimation. We derived flow‐duration curves for eight sites in the Southwestern United States based on both 15‐min and daily‐averaged flow data. We then estimated sediment loads for both flow‐duration curves using the Sediment Impact Analysis Method, implemented in HEC‐RAS. When average daily flow is used to generate flow‐duration curves, sediment load estimation is lower by up to an order of magnitude. This trend is generally unaffected by uncertainty associated with sediment particle size or hydraulic roughness. The ratio of sediment loads estimated by 15‐min versus daily‐averaged flow‐duration curves is strongly correlated with channel slope, being greater on steep‐slope channels. Sediment loads estimated by the two types of flow‐duration curves are closely correlated, suggesting possible relationships for improving predictions when high‐temporal resolution data are unavailable. Results also suggest that the largest flow contributes significantly to total sediment load, and thus will greatly impact ephemeral stream geomorphology in arid and semiarid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号